123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- # Note: this code is being actively modified by justheuristic. If you want to change anything about it, please warn me.
- from __future__ import annotations
- import asyncio
- import random
- from typing import Any, AsyncIterator, Dict, Optional
- import torch
- from hivemind.compression import deserialize_torch_tensor, serialize_torch_tensor
- from hivemind.moe.client.expert import RemoteExpert, RemoteExpertWorker
- from hivemind.moe.expert_uid import ExpertInfo
- from hivemind.p2p import P2P, StubBase
- from hivemind.proto import runtime_pb2
- from hivemind.utils import anext, nested_flatten, use_hivemind_log_handler, get_logger
- from src.data_structures import RemoteModuleInfo
- from src.dht_utils import ModuleUID
- from src.server.handler import TransformerConnectionHandler
- use_hivemind_log_handler("in_root_logger")
- logger = get_logger(__file__)
- class RemoteTransformerBlock(RemoteExpert):
- """A class that interacts with a remote module on a specific server for forward/backward or inference"""
- def __init__(self, peers_info: RemoteModuleInfo, p2p: P2P):
- peer_info = ExpertInfo(peers_info.uid, random.choice(list(peers_info.peer_ids))) # TODO replace this
- super().__init__(peer_info, p2p)
- @property
- def stub(self) -> StubBase:
- return TransformerConnectionHandler.get_stub(self.p2p, self.peer_id)
- def forward(self, inputs: torch.Tensor, **kwargs):
- for k, v in kwargs.items():
- assert v is None, f"Extra keyword arguments are not yet supported (got {k} = {v})"
- return super().forward(inputs)
- def inference_session(self) -> RemoteTransformerBlockInferenceSession:
- """Initialize a new inference session with the specified remote server"""
- _ = self.info # create _info manually since the built-in property will not work inside RemoteExpertWorker
- return RemoteExpertWorker.run_coroutine(RemoteTransformerBlockInferenceSession._create(self))
- def begin_inference_session(self):
- logger.warning("beging_inference_session was renamed to just inference_session")
- return self.inference_session()
- class RemoteTransformerBlockInferenceSession:
- """An interface to a single multi-step *inference* session for a specific remote module with a specific server"""
- def __init__(self, uid: ModuleUID, info: Dict[str, Any], inputs_queue: asyncio.Queue, outputs_aiter: AsyncIterator):
- self.uid, self.info = uid, info
- # warning: this code manages async objects that are only usable inside RemoteExpertWorker's background thread;
- # using them in any other EventLoop may cause side-effects including, headaches, diarrhea, and loss of sleep
- self._inputs_queue: asyncio.Queue[runtime_pb2.ExpertRequest] = inputs_queue
- self._outputs_stream: AsyncIterator[runtime_pb2.ExpertResponse] = outputs_aiter
- self.stepped = False
- self.closed = False
- @classmethod
- async def _create(
- cls, remote_module: RemoteTransformerBlock, timeout: Optional[float] = None
- ) -> RemoteTransformerBlockInferenceSession:
- """Create a new session for a given remote module. This code is meant to be run inside RemoteExpertWorker"""
- inputs_queue = asyncio.Queue()
- outputs_stream = await remote_module.stub.rpc_inference(
- cls._read_inputs_from_queue(inputs_queue, timeout), timeout=timeout
- )
- return cls(remote_module.uid, remote_module.info, inputs_queue, outputs_stream)
- @staticmethod
- async def _read_inputs_from_queue(queue: asyncio.Queue, timeout: Optional[float]) -> AsyncIterator:
- while True:
- next_input_message = await asyncio.wait_for(queue.get(), timeout)
- yield next_input_message
- if not next_input_message.uid and not next_input_message.tensors:
- break # this message means "done sending"
- def step(self, new_hidden_states: torch.Tensor):
- """Inference step: send a chunk of input tensors and receive a chunk of outputs"""
- if self.closed:
- raise Exception("Session is closed, cannot perform step")
- # serialize inputs and put them into the queue
- inputs = (new_hidden_states,)
- print('!!', self.uid)
- outputs_serialized = RemoteExpertWorker.run_coroutine(
- self._step(
- runtime_pb2.ExpertRequest(
- uid=self.uid,
- tensors=[
- serialize_torch_tensor(tensor, proto.compression)
- for tensor, proto in zip(inputs, nested_flatten(self.info["forward_schema"]))
- ],
- )
- )
- )
- outputs = list(map(deserialize_torch_tensor, outputs_serialized.tensors))
- assert outputs[0].shape == inputs[0].shape, f"expected outputs[0] to be hidden states but got {outputs[0]}"
- return outputs[0]
- async def _step(self, inputs_serialized: runtime_pb2.ExpertRequest) -> runtime_pb2.ExpertResponse:
- """Inference step on serialized data. This code is meant to be run inside RemoteExpertWorker"""
- await self._inputs_queue.put(inputs_serialized)
- self.stepped = True
- return await anext(self._outputs_stream)
- def close(self):
- """Finish a given inference session, close the underlying connection"""
- if self._outputs_stream is None:
- return # already closed
- RemoteExpertWorker.run_coroutine(self._aclose_stream())
- self._outputs_stream = self._inputs_queue = None
- self.closed = True
- async def _aclose_stream(self):
- """Close the inference session. This code is meant to be run inside RemoteExpertWorker"""
- if self._outputs_stream is None:
- return # already closed
- if self.stepped:
- await self._inputs_queue.put(runtime_pb2.ExpertRequest()) # empty request will trigger end of session
- try:
- await anext(self._outputs_stream)
- except StopAsyncIteration:
- pass
- def __del__(self):
- self.close()
- def __enter__(self):
- assert not self.closed
- return self
- def __exit__(self, *exc_details):
- self.close()
|