|
@@ -0,0 +1,101 @@
|
|
|
+#!/usr/bin/env python3
|
|
|
+
|
|
|
+import argparse
|
|
|
+import multiprocessing as mp
|
|
|
+from time import perf_counter
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+import torch
|
|
|
+from hivemind.utils.logging import get_logger
|
|
|
+
|
|
|
+from petals import AutoDistributedModelForCausalLM, AutoDistributedModelForSequenceClassification
|
|
|
+from petals.constants import DTYPE_MAP, PUBLIC_INITIAL_PEERS
|
|
|
+
|
|
|
+logger = get_logger()
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+ parser = argparse.ArgumentParser()
|
|
|
+ parser.add_argument("--model", type=str, default="bigscience/bloom")
|
|
|
+ parser.add_argument("--device", type=str, default="cpu")
|
|
|
+ parser.add_argument("--task", type=str, default="cls")
|
|
|
+ parser.add_argument("--initial_peers", type=str, nargs="+", default=PUBLIC_INITIAL_PEERS)
|
|
|
+ parser.add_argument("--torch_dtype", type=str, default="bfloat16")
|
|
|
+ parser.add_argument("--n_processes", type=str, default=1)
|
|
|
+ parser.add_argument("--seq_len", type=int, default=128)
|
|
|
+ parser.add_argument("--pre_seq_len", type=int, default=16)
|
|
|
+ parser.add_argument("--n_steps", type=int, default=10)
|
|
|
+ parser.add_argument("--batch_size", type=int, required=True)
|
|
|
+ parser.add_argument("--warmup_steps", type=int, default=1)
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ assert args.task in ["cls", "causal_lm"]
|
|
|
+
|
|
|
+ if args.n_processes == "n_gpus":
|
|
|
+ args.n_processes = torch.cuda.device_count()
|
|
|
+ else:
|
|
|
+ args.n_processes = int(args.n_processes)
|
|
|
+
|
|
|
+ processes = [mp.Process(target=benchmark_training, args=(i, args)) for i in range(args.n_processes)]
|
|
|
+ for proc in processes:
|
|
|
+ proc.start()
|
|
|
+ for proc in processes:
|
|
|
+ proc.join()
|
|
|
+
|
|
|
+
|
|
|
+def benchmark_training(process_idx, args):
|
|
|
+ if args.task == "cls":
|
|
|
+ model = AutoDistributedModelForSequenceClassification.from_pretrained(
|
|
|
+ args.model,
|
|
|
+ initial_peers=args.initial_peers,
|
|
|
+ torch_dtype=DTYPE_MAP[args.torch_dtype],
|
|
|
+ tuning_mode="deep_ptune",
|
|
|
+ pre_seq_len=args.pre_seq_len,
|
|
|
+ num_labels=2,
|
|
|
+ )
|
|
|
+ elif args.task == "causal_lm":
|
|
|
+ model = AutoDistributedModelForCausalLM.from_pretrained(
|
|
|
+ args.model,
|
|
|
+ initial_peers=args.initial_peers,
|
|
|
+ torch_dtype=DTYPE_MAP[args.torch_dtype],
|
|
|
+ tuning_mode="deep_ptune",
|
|
|
+ pre_seq_len=args.pre_seq_len,
|
|
|
+ )
|
|
|
+ model = model.to(args.device)
|
|
|
+ opt = torch.optim.Adam(model.parameters())
|
|
|
+ logger.info(f"Created model: {process_idx=} {model.device=}")
|
|
|
+
|
|
|
+ torch.manual_seed(42)
|
|
|
+ fwd_times = []
|
|
|
+ bwd_times = []
|
|
|
+ for step in range(args.n_steps):
|
|
|
+ input_ids = torch.randint(0, model.config.vocab_size, size=(args.batch_size, args.seq_len), device=args.device)
|
|
|
+ if args.task == "cls":
|
|
|
+ labels = torch.randint(0, 2, size=[args.batch_size], device=args.device)
|
|
|
+ else:
|
|
|
+ labels = input_ids
|
|
|
+
|
|
|
+ logger.info(f"{process_idx=} {step=} Forward")
|
|
|
+ start_time = perf_counter()
|
|
|
+ outputs = model(input_ids, labels=labels)
|
|
|
+ fwd_times.append(perf_counter() - start_time)
|
|
|
+
|
|
|
+ logger.info(f"{process_idx=} {step=} Backward")
|
|
|
+ start_time = perf_counter()
|
|
|
+ outputs.loss.backward()
|
|
|
+ bwd_times.append(perf_counter() - start_time)
|
|
|
+
|
|
|
+ logger.info(f"{process_idx=} {step=} Optimizer step")
|
|
|
+ opt.step()
|
|
|
+ opt.zero_grad()
|
|
|
+
|
|
|
+ if step >= args.warmup_steps:
|
|
|
+ fwd_speed = input_ids.numel() / np.mean(fwd_times[1:])
|
|
|
+ bwd_speed = input_ids.numel() / np.mean(bwd_times[1:])
|
|
|
+ logger.info(f"{process_idx=} Fwd speed: {fwd_speed:.2f} | Bwd speed: {bwd_speed:.2f}")
|
|
|
+
|
|
|
+ logger.info(f"Final result: {process_idx=} {fwd_speed=:.2f} | {bwd_speed=:.2f}")
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ main()
|