benchmark_forward.py 2.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. #!/usr/bin/env python3
  2. import argparse
  3. import multiprocessing as mp
  4. from time import perf_counter
  5. import torch
  6. from hivemind.utils.logging import get_logger
  7. from petals import AutoDistributedModel
  8. from petals.constants import DTYPE_MAP, PUBLIC_INITIAL_PEERS
  9. logger = get_logger()
  10. def main():
  11. parser = argparse.ArgumentParser()
  12. parser.add_argument("--model", type=str, default="bigscience/bloom")
  13. parser.add_argument("--initial_peers", type=str, nargs="+", default=PUBLIC_INITIAL_PEERS)
  14. parser.add_argument("--torch_dtype", type=str, default="bfloat16")
  15. parser.add_argument("--n_processes", type=str, default=1)
  16. parser.add_argument("--seq_len", type=int, default=128)
  17. parser.add_argument("--n_steps", type=int, default=100)
  18. parser.add_argument("--batch_size", type=int, required=True)
  19. parser.add_argument("--warmup_steps", type=int, default=1)
  20. args = parser.parse_args()
  21. if args.n_processes == "n_gpus":
  22. args.n_processes = torch.cuda.device_count()
  23. else:
  24. args.n_processes = int(args.n_processes)
  25. processes = [mp.Process(target=benchmark_forward, args=(i, args)) for i in range(args.n_processes)]
  26. for proc in processes:
  27. proc.start()
  28. for proc in processes:
  29. proc.join()
  30. @torch.inference_mode()
  31. def benchmark_forward(process_idx, args):
  32. model = AutoDistributedModel.from_pretrained(
  33. args.model,
  34. initial_peers=args.initial_peers,
  35. torch_dtype=DTYPE_MAP[args.torch_dtype],
  36. )
  37. logger.info(f"Created model: {process_idx=} {model.device=}")
  38. torch.manual_seed(42)
  39. for step in range(args.n_steps):
  40. if step == args.warmup_steps:
  41. start_time = perf_counter()
  42. input_ids = torch.randint(0, model.config.vocab_size, size=(args.batch_size, args.seq_len))
  43. logger.info(f"{process_idx=} Fwd begin {input_ids.shape=}")
  44. h = model(input_ids)
  45. # We don't use model.lm_head
  46. logger.info(f"{process_idx=} Fwd end")
  47. if step >= args.warmup_steps:
  48. speed = step / (perf_counter() - start_time) * input_ids.numel()
  49. logger.info(f"{process_idx=} {step=} {speed=:.3f}")
  50. logger.info(f"Final result: {process_idx=} {speed=:.3f}")
  51. if __name__ == "__main__":
  52. main()