|
@@ -1,232 +0,0 @@
|
|
|
-import logging
|
|
|
-from typing import Optional, Union, List, Sequence, Tuple, Dict
|
|
|
-
|
|
|
-import torch
|
|
|
-from hivemind import DHT, P2P, get_logger, use_hivemind_log_handler
|
|
|
-from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
|
|
|
-from torch import nn
|
|
|
-
|
|
|
-import asyncio
|
|
|
-from src.client.sequence_manager import RemoteSequenceManager
|
|
|
-
|
|
|
-from hivemind import (
|
|
|
- P2P,
|
|
|
- get_logger,
|
|
|
- nested_flatten,
|
|
|
- serialize_torch_tensor,
|
|
|
- use_hivemind_log_handler,
|
|
|
-)
|
|
|
-
|
|
|
-from hivemind.utils.nested import nested_compare, nested_flatten, nested_pack
|
|
|
-from hivemind.moe.client.expert import expert_forward, expert_backward
|
|
|
-from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
|
|
|
-from hivemind.p2p import StubBase
|
|
|
-
|
|
|
-from src.client.sequence_manager import RemoteSequenceManager
|
|
|
-from src.server.handler import TransformerConnectionHandler
|
|
|
-from src.data_structures import CHAIN_DELIMITER, RemoteSpanInfo, ModuleUID, RemoteSpanInfo, RPCInfo
|
|
|
-
|
|
|
-
|
|
|
-MAX_TOKENS_IN_BATCH=1024
|
|
|
-
|
|
|
-
|
|
|
-async def run_forward(
|
|
|
- uid: ModuleUID,
|
|
|
- stub: StubBase,
|
|
|
- rpc_info: RPCInfo,
|
|
|
- *inputs: torch.Tensor,
|
|
|
- **kwargs
|
|
|
-) -> Tuple[torch.Tensor, ...]:
|
|
|
- """
|
|
|
- TODO: add description
|
|
|
- """
|
|
|
-
|
|
|
- # Note: *inputs are flattened input tensors that follow the expert's info['input_schema']
|
|
|
- # detach to avoid pickling the computation graph
|
|
|
- assert len(kwargs) == len(rpc_info["keyword_names"]), f"Keyword args should be {rpc_info['keyword_names']}"
|
|
|
- kwargs = {key: kwargs[key] for key in rpc_info["keyword_names"]}
|
|
|
-
|
|
|
- # Note: we put keyword arguments in the same order as on a server to prevent f(a=1, b=2) != f(b=2, a=1) errors
|
|
|
- forward_inputs = (inputs, kwargs)
|
|
|
-
|
|
|
- if not nested_compare(forward_inputs, rpc_info["forward_schema"]):
|
|
|
- raise TypeError(f"Inputs do not match expert input schema. Did you pass the right number of parameters?")
|
|
|
-
|
|
|
- forward_inputs = nested_flatten(forward_inputs)
|
|
|
- inputs = tuple(tensor.cpu().detach() for tensor in forward_inputs)
|
|
|
-
|
|
|
- serialized_tensors = (
|
|
|
- serialize_torch_tensor(tensor, proto.compression)
|
|
|
- for tensor, proto in zip(inputs, nested_flatten(rpc_info["forward_schema"]))
|
|
|
- )
|
|
|
- deserialized_outputs = await expert_forward(uid, inputs, serialized_tensors, stub)
|
|
|
- flat_outputs = tuple(deserialized_outputs)
|
|
|
-
|
|
|
- return nested_pack(flat_outputs, structure=rpc_info["outputs_schema"])
|
|
|
-
|
|
|
-
|
|
|
-async def run_backward(
|
|
|
- uid: ModuleUID,
|
|
|
- stub: StubBase,
|
|
|
- rpc_info: RPCInfo,
|
|
|
- intemediate_inputs: List[torch.Tensor],
|
|
|
- grad_outputs: List[torch.Tensor],
|
|
|
-) -> Sequence[torch.Tensor]:
|
|
|
- """
|
|
|
- TODO: add description
|
|
|
- """
|
|
|
-
|
|
|
- grad_outputs_cpu = tuple(tensor.cpu() for tensor in grad_outputs)
|
|
|
- inputs_and_grad_outputs = tuple(nested_flatten((intemediate_inputs, grad_outputs_cpu)))
|
|
|
- backward_schema = tuple(nested_flatten((rpc_info["forward_schema"], rpc_info["outputs_schema"])))
|
|
|
-
|
|
|
- serialized_tensors = (
|
|
|
- serialize_torch_tensor(tensor, proto.compression)
|
|
|
- for tensor, proto in zip(inputs_and_grad_outputs, backward_schema)
|
|
|
- )
|
|
|
- deserialized_grad_inputs = await expert_backward(uid, inputs_and_grad_outputs, serialized_tensors, stub)
|
|
|
- return deserialized_grad_inputs
|
|
|
-
|
|
|
-
|
|
|
-async def async_forward(
|
|
|
- inputs: torch.Tensor,
|
|
|
- sequence_manager: RemoteSequenceManager,
|
|
|
- start_index: int = 0,
|
|
|
- end_index: Optional[int] = None
|
|
|
-) -> Tuple[torch.Tensor, Sequence[torch.Tensor], Sequence[RemoteSpanInfo]]:
|
|
|
- """
|
|
|
- TODO: add description
|
|
|
- """
|
|
|
-
|
|
|
- assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3
|
|
|
-
|
|
|
- end_index = end_index if end_index is not None else len(sequence_manager.block_uids)
|
|
|
- assert start_index >= 0 and end_index <= len(sequence_manager.block_uids)
|
|
|
-
|
|
|
- sequences = sequence_manager.make_sequence(start_index, end_index)
|
|
|
- intermediate_inputs = []
|
|
|
- done_sequences = []
|
|
|
-
|
|
|
- while len(sequences) > 0:
|
|
|
- while True:
|
|
|
- try:
|
|
|
- span = sequences.pop(0)
|
|
|
- span_uids: str = CHAIN_DELIMITER.join(sequence_manager.block_uids[span.start: span.end])
|
|
|
- stub = TransformerConnectionHandler.get_stub(sequence_manager.p2p, span.peer_id)
|
|
|
- (outputs, ) = await run_forward(span_uids, stub, sequence_manager.rpc_info, inputs)
|
|
|
-
|
|
|
- assert isinstance(outputs, torch.Tensor)
|
|
|
- assert outputs.shape == inputs.shape, f"Expected output {inputs.shape}, got {outputs.shape}"
|
|
|
-
|
|
|
- # Save intermediate inputs and subsequences if the forward is already done for them
|
|
|
- intermediate_inputs.append(inputs)
|
|
|
- done_sequences.append(span)
|
|
|
-
|
|
|
- inputs = outputs
|
|
|
- break
|
|
|
- except Exception as e:
|
|
|
- logging.debug(f"Caught {e} when running forward for chain {span.start}-{span.end}", exc_info=True)
|
|
|
- backup_sequences = sequence_manager.make_sequence(span.start)
|
|
|
- assert backup_sequences[0].start == span.start
|
|
|
- sequences = backup_sequences
|
|
|
-
|
|
|
- return outputs, intermediate_inputs, done_sequences
|
|
|
-
|
|
|
-
|
|
|
-async def async_backward(
|
|
|
- grad_outputs: Sequence[torch.Tensor],
|
|
|
- intermediate_inputs: Sequence[torch.Tensor],
|
|
|
- forward_sequences: Sequence[RemoteSpanInfo],
|
|
|
- sequence_manager: RemoteSequenceManager
|
|
|
-) -> Sequence[torch.Tensor]:
|
|
|
- """
|
|
|
- TODO: add description
|
|
|
- """
|
|
|
-
|
|
|
- assert len(intermediate_inputs) == len(forward_sequences)
|
|
|
- # TODO think about grads w.r.t. deep prompts
|
|
|
-
|
|
|
- while len(forward_sequences) > 0 and len(intermediate_inputs) > 0:
|
|
|
- while True:
|
|
|
- try:
|
|
|
- inputs = intermediate_inputs.pop(-1)
|
|
|
- span = forward_sequences.pop(-1)
|
|
|
-
|
|
|
- span_uids: str = CHAIN_DELIMITER.join(sequence_manager.block_uids[span.start: span.end])
|
|
|
- stub = TransformerConnectionHandler.get_stub(sequence_manager.p2p, span.peer_id)
|
|
|
-
|
|
|
- grad_outputs = await run_backward(
|
|
|
- span_uids, stub, sequence_manager.rpc_info, inputs, grad_outputs
|
|
|
- )
|
|
|
- break
|
|
|
- except Exception as e:
|
|
|
- logging.warning(f"Caught {e} when running backward for chain {span.start}-{span.end}", exc_info=True)
|
|
|
- _, backup_intermediate_inputs, backup_forward_sequences = await async_forward(
|
|
|
- inputs, sequence_manager, start_index=span.start, end_index=span.end
|
|
|
- )
|
|
|
-
|
|
|
- assert len(intermediate_inputs) == len(forward_sequences)
|
|
|
- assert backup_forward_sequences[0].start == span.start
|
|
|
- assert backup_forward_sequences[-1].end == span.end
|
|
|
-
|
|
|
- forward_sequences.extend(backup_forward_sequences)
|
|
|
- intermediate_inputs.extend(backup_intermediate_inputs)
|
|
|
- return grad_outputs
|
|
|
-
|
|
|
-
|
|
|
-async def _gather_forward(input_batches, sequence_manager):
|
|
|
- return await asyncio.gather(*[
|
|
|
- async_forward(input_batch, sequence_manager)
|
|
|
- for input_batch in input_batches
|
|
|
- ])
|
|
|
-
|
|
|
-
|
|
|
-async def _gather_backward(grad_output_batches, intermediate_input_batches, forward_sequences, sequence_manager):
|
|
|
- return await asyncio.gather(*[
|
|
|
- async_backward((grad_output, ), input_batch, spans, sequence_manager)
|
|
|
- for grad_output, input_batch, spans in zip(grad_output_batches, intermediate_input_batches, forward_sequences)
|
|
|
- ])
|
|
|
-
|
|
|
-
|
|
|
-class _RemoteSequentialAutogradFunction(torch.autograd.Function):
|
|
|
- """
|
|
|
- A pytorch autograd-compatible function that calls a sequence of transformer blocks on remote peers
|
|
|
- :note: this function splits input data into batches for efficient parallel processing
|
|
|
- """
|
|
|
-
|
|
|
- @staticmethod
|
|
|
- def forward(ctx, inputs: torch.Tensor, sequence_manager: RemoteSequenceManager):
|
|
|
- batch_size = max(MAX_TOKENS_IN_BATCH // inputs.shape[1], 1)
|
|
|
- input_batches: Sequence[torch.Tensor] = inputs.split(batch_size)
|
|
|
-
|
|
|
- sequence_manager.rpc_info # lazy init
|
|
|
- outputs = RemoteExpertWorker.run_coroutine(
|
|
|
- _gather_forward(input_batches, sequence_manager)
|
|
|
- )
|
|
|
- assert len(outputs) == len(input_batches)
|
|
|
-
|
|
|
- output_batches = [output[0] for output in outputs]
|
|
|
- intemediate_input_batches = [output[1] for output in outputs]
|
|
|
- sequences_for_batches = [output[2] for output in outputs]
|
|
|
-
|
|
|
- ctx.sequence_manager = sequence_manager
|
|
|
- ctx.intemediate_input_batches = intemediate_input_batches
|
|
|
- ctx.sequences_for_batches = sequences_for_batches
|
|
|
- return torch.cat(output_batches, dim=0)
|
|
|
-
|
|
|
- @staticmethod
|
|
|
- def backward(ctx, grad_outputs: torch.Tensor):
|
|
|
- intermediate_input_batches: List[Sequence[torch.Tensor]] = ctx.intemediate_input_batches
|
|
|
- forward_sequences: List[Sequence[RemoteSpanInfo]] = ctx.sequences_for_batches
|
|
|
- ctx.sequence_manager.rpc_info # lazy init
|
|
|
-
|
|
|
- batch_size = max(MAX_TOKENS_IN_BATCH // grad_outputs.shape[1], 1)
|
|
|
- grad_output_batches: Sequence[torch.Tensor] = grad_outputs.split(batch_size)
|
|
|
- assert len(intermediate_input_batches) == len(grad_output_batches) == len(forward_sequences)
|
|
|
-
|
|
|
- grad_input_batches = RemoteExpertWorker.run_coroutine(
|
|
|
- _gather_backward(grad_output_batches, intermediate_input_batches, forward_sequences, ctx.sequence_manager)
|
|
|
- )
|
|
|
- grad_inputs = [grad_input_batch[0] for grad_input_batch in grad_input_batches]
|
|
|
- grad_inputs = torch.cat(grad_inputs, dim=0)
|
|
|
- return (grad_inputs, None)
|