5
0
dbaranchuk 3 жил өмнө
parent
commit
d1abb2f169

+ 1 - 1
src/client/remote_sequential.py

@@ -15,7 +15,7 @@ from src.client.sequence_manager import RemoteSequenceManager
 from src.data_structures import UID_DELIMITER
 from src.dht_utils import _create_remote_modules_from_infos
 
-from src.client.async_forward_backward import _RemoteSequentialAutogradFunction
+from src.client.sequential_autograd import _RemoteSequentialAutogradFunction
 
 use_hivemind_log_handler("in_root_logger")
 logger = get_logger(__file__)

+ 232 - 0
src/client/sequential_autograd.py

@@ -0,0 +1,232 @@
+import logging
+from typing import Optional, Union, List, Sequence, Tuple, Dict
+
+import torch
+from hivemind import DHT, P2P, get_logger, use_hivemind_log_handler
+from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
+from torch import nn
+
+import asyncio
+from src.client.sequence_manager import RemoteSequenceManager
+
+from hivemind import (
+    P2P,
+    get_logger,
+    nested_flatten,
+    serialize_torch_tensor,
+    use_hivemind_log_handler,
+)
+
+from hivemind.utils.nested import nested_compare, nested_flatten, nested_pack
+from hivemind.moe.client.expert import expert_forward, expert_backward
+from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
+from hivemind.p2p import StubBase
+
+from src.client.sequence_manager import RemoteSequenceManager
+from src.server.handler import TransformerConnectionHandler
+from src.data_structures import CHAIN_DELIMITER, RemoteSpanInfo, ModuleUID, RemoteSpanInfo, RPCInfo
+
+
+MAX_TOKENS_IN_BATCH=1024
+
+
+async def run_forward(
+    uid: ModuleUID, 
+    stub: StubBase,
+    rpc_info: RPCInfo,
+    *inputs: torch.Tensor,
+    **kwargs
+) -> Tuple[torch.Tensor, ...]:
+    """
+    TODO: add description
+    """
+
+    # Note: *inputs are flattened input tensors that follow the expert's info['input_schema']
+    # detach to avoid pickling the computation graph
+    assert len(kwargs) == len(rpc_info["keyword_names"]), f"Keyword args should be {rpc_info['keyword_names']}"
+    kwargs = {key: kwargs[key] for key in rpc_info["keyword_names"]}
+    
+    # Note: we put keyword arguments in the same order as on a server to prevent f(a=1, b=2) != f(b=2, a=1) errors
+    forward_inputs = (inputs, kwargs)
+
+    if not nested_compare(forward_inputs, rpc_info["forward_schema"]):
+        raise TypeError(f"Inputs do not match expert input schema. Did you pass the right number of parameters?")
+ 
+    forward_inputs = nested_flatten(forward_inputs)
+    inputs = tuple(tensor.cpu().detach() for tensor in forward_inputs)
+
+    serialized_tensors = (
+        serialize_torch_tensor(tensor, proto.compression)
+        for tensor, proto in zip(inputs, nested_flatten(rpc_info["forward_schema"]))
+    )
+    deserialized_outputs = await expert_forward(uid, inputs, serialized_tensors, stub)
+    flat_outputs = tuple(deserialized_outputs)
+
+    return nested_pack(flat_outputs, structure=rpc_info["outputs_schema"])
+
+
+async def run_backward(
+    uid: ModuleUID, 
+    stub: StubBase,
+    rpc_info: RPCInfo,
+    intemediate_inputs: List[torch.Tensor], 
+    grad_outputs: List[torch.Tensor], 
+) -> Sequence[torch.Tensor]:
+    """
+    TODO: add description
+    """
+
+    grad_outputs_cpu = tuple(tensor.cpu() for tensor in grad_outputs)
+    inputs_and_grad_outputs = tuple(nested_flatten((intemediate_inputs, grad_outputs_cpu)))
+    backward_schema = tuple(nested_flatten((rpc_info["forward_schema"], rpc_info["outputs_schema"])))
+
+    serialized_tensors = (
+        serialize_torch_tensor(tensor, proto.compression)
+        for tensor, proto in zip(inputs_and_grad_outputs, backward_schema)
+    )
+    deserialized_grad_inputs = await expert_backward(uid, inputs_and_grad_outputs, serialized_tensors, stub)
+    return deserialized_grad_inputs
+
+
+async def async_forward(
+    inputs: torch.Tensor, 
+    sequence_manager: RemoteSequenceManager,
+    start_index: int = 0, 
+    end_index: Optional[int] = None
+) -> Tuple[torch.Tensor, Sequence[torch.Tensor], Sequence[RemoteSpanInfo]]:
+    """
+    TODO: add description
+    """
+
+    assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3
+
+    end_index = end_index if end_index is not None else len(sequence_manager.block_uids)
+    assert start_index >= 0 and end_index <= len(sequence_manager.block_uids)
+
+    sequences = sequence_manager.make_sequence(start_index, end_index)
+    intermediate_inputs = []
+    done_sequences = []
+
+    while len(sequences) > 0:
+        while True:
+            try:
+                span = sequences.pop(0)
+                span_uids: str = CHAIN_DELIMITER.join(sequence_manager.block_uids[span.start: span.end])
+                stub = TransformerConnectionHandler.get_stub(sequence_manager.p2p, span.peer_id)
+                (outputs, ) = await run_forward(span_uids, stub, sequence_manager.rpc_info, inputs)
+
+                assert isinstance(outputs, torch.Tensor)
+                assert outputs.shape == inputs.shape, f"Expected output {inputs.shape}, got {outputs.shape}"
+
+                # Save intermediate inputs and subsequences if the forward is already done for them
+                intermediate_inputs.append(inputs)
+                done_sequences.append(span)
+
+                inputs = outputs
+                break
+            except Exception as e:
+                logging.debug(f"Caught {e} when running forward for chain {span.start}-{span.end}", exc_info=True)
+                backup_sequences = sequence_manager.make_sequence(span.start)
+                assert backup_sequences[0].start == span.start
+                sequences = backup_sequences
+
+    return outputs, intermediate_inputs, done_sequences
+
+
+async def async_backward(
+    grad_outputs: Sequence[torch.Tensor],
+    intermediate_inputs: Sequence[torch.Tensor],  
+    forward_sequences: Sequence[RemoteSpanInfo], 
+    sequence_manager: RemoteSequenceManager
+) -> Sequence[torch.Tensor]:
+    """
+    TODO: add description
+    """
+
+    assert len(intermediate_inputs) == len(forward_sequences)
+    # TODO think about grads w.r.t. deep prompts
+    
+    while len(forward_sequences) > 0 and len(intermediate_inputs) > 0:
+        while True:
+            try:
+                inputs = intermediate_inputs.pop(-1)
+                span = forward_sequences.pop(-1)
+
+                span_uids: str = CHAIN_DELIMITER.join(sequence_manager.block_uids[span.start: span.end])
+                stub = TransformerConnectionHandler.get_stub(sequence_manager.p2p, span.peer_id)
+                
+                grad_outputs = await run_backward(
+                    span_uids, stub, sequence_manager.rpc_info, inputs, grad_outputs
+                )
+                break
+            except Exception as e:
+                logging.warning(f"Caught {e} when running backward for chain {span.start}-{span.end}", exc_info=True)
+                _, backup_intermediate_inputs, backup_forward_sequences = await async_forward(
+                    inputs, sequence_manager, start_index=span.start, end_index=span.end 
+                )
+
+                assert len(intermediate_inputs) == len(forward_sequences)
+                assert backup_forward_sequences[0].start == span.start
+                assert backup_forward_sequences[-1].end == span.end
+
+                forward_sequences.extend(backup_forward_sequences)
+                intermediate_inputs.extend(backup_intermediate_inputs)
+    return grad_outputs
+
+
+async def _gather_forward(input_batches, sequence_manager):
+    return await asyncio.gather(*[
+        async_forward(input_batch, sequence_manager)
+        for input_batch in input_batches
+    ])
+
+
+async def _gather_backward(grad_output_batches, intermediate_input_batches, forward_sequences, sequence_manager):
+    return await asyncio.gather(*[
+        async_backward((grad_output, ), input_batch, spans, sequence_manager)
+        for grad_output, input_batch, spans in zip(grad_output_batches, intermediate_input_batches, forward_sequences)
+    ])
+
+
+class _RemoteSequentialAutogradFunction(torch.autograd.Function):
+    """
+    A pytorch autograd-compatible function that calls a sequence of transformer blocks on remote peers
+    :note: this function splits input data into batches for efficient parallel processing
+    """
+ 
+    @staticmethod
+    def forward(ctx, inputs: torch.Tensor, sequence_manager: RemoteSequenceManager):
+        batch_size = max(MAX_TOKENS_IN_BATCH // inputs.shape[1], 1)
+        input_batches: Sequence[torch.Tensor] = inputs.split(batch_size)
+
+        sequence_manager.rpc_info # lazy init
+        outputs = RemoteExpertWorker.run_coroutine(
+            _gather_forward(input_batches, sequence_manager)
+        )
+        assert len(outputs) == len(input_batches)
+
+        output_batches = [output[0] for output in outputs]
+        intemediate_input_batches = [output[1] for output in outputs]
+        sequences_for_batches = [output[2] for output in outputs]
+
+        ctx.sequence_manager = sequence_manager
+        ctx.intemediate_input_batches = intemediate_input_batches
+        ctx.sequences_for_batches = sequences_for_batches
+        return torch.cat(output_batches, dim=0)
+ 
+    @staticmethod
+    def backward(ctx, grad_outputs: torch.Tensor):
+        intermediate_input_batches: List[Sequence[torch.Tensor]] = ctx.intemediate_input_batches
+        forward_sequences: List[Sequence[RemoteSpanInfo]] = ctx.sequences_for_batches
+        ctx.sequence_manager.rpc_info # lazy init
+
+        batch_size = max(MAX_TOKENS_IN_BATCH // grad_outputs.shape[1], 1)
+        grad_output_batches: Sequence[torch.Tensor] = grad_outputs.split(batch_size)
+        assert len(intermediate_input_batches) == len(grad_output_batches) == len(forward_sequences)
+
+        grad_input_batches = RemoteExpertWorker.run_coroutine(
+            _gather_backward(grad_output_batches, intermediate_input_batches, forward_sequences, ctx.sequence_manager)
+        )
+        grad_inputs = [grad_input_batch[0] for grad_input_batch in grad_input_batches]
+        grad_inputs = torch.cat(grad_inputs, dim=0)
+        return (grad_inputs, None)