123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- import grpc
- import numpy as np
- import pytest
- import torch
- import hivemind
- from hivemind.moe.server import background_server, declare_experts
- from hivemind.moe.client.expert import DUMMY
- from hivemind.moe.server import layers
- @pytest.mark.forked
- def test_moe():
- all_expert_uids = [
- f"ffn.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}" for _ in range(10)
- ]
- with background_server(
- expert_uids=all_expert_uids, device="cpu", expert_cls="ffn", num_handlers=1, hidden_dim=16
- ) as (server_endpoint, dht_maddrs):
- dht = hivemind.DHT(start=True, initial_peers=dht_maddrs)
- dmoe = hivemind.RemoteMixtureOfExperts(
- in_features=16, grid_size=(4, 4, 4), dht=dht, k_best=3, uid_prefix="ffn."
- )
- for i in range(3):
- out = dmoe(torch.randn(10, 16))
- out.sum().backward()
- @pytest.mark.forked
- def test_no_experts():
- all_expert_uids = [
- f"expert.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}" for _ in range(10)
- ]
- with background_server(
- expert_uids=all_expert_uids, device="cpu", expert_cls="nop_delay", num_handlers=1, hidden_dim=16
- ) as (server_endpoint, dht_maddrs):
- dht = hivemind.DHT(start=True, initial_peers=dht_maddrs)
- dmoe = hivemind.RemoteSwitchMixtureOfExperts(
- in_features=16,
- grid_size=(4, 4, 4),
- dht=dht,
- uid_prefix="expert.",
- forward_timeout=0.1,
- backward_timeout=0.1,
- allow_zero_outputs=True,
- )
- for i in range(3):
- out, balancing_loss = dmoe(torch.randn(10, 16))
- out.sum().backward()
- @pytest.mark.forked
- def test_call_many(hidden_dim=16):
- k_min = 1
- timeout_after_k_min = None
- backward_k_min = 1
- forward_timeout = None
- backward_timeout = None
- detect_anomalies = False
- allow_zero_outputs = False
- atol = 1e-5
- with background_server(
- num_experts=5,
- device="cpu",
- expert_cls="ffn",
- num_handlers=1,
- hidden_dim=hidden_dim,
- optim_cls=None,
- no_dht=True,
- ) as (server_endpoint, _):
- inputs = torch.randn(4, hidden_dim, requires_grad=True)
- inputs_clone = inputs.clone().detach().requires_grad_(True)
- e0, e1, e2, e3, e4 = [hivemind.RemoteExpert(f"expert.{i}", server_endpoint) for i in range(5)]
- e5 = hivemind.RemoteExpert(f"thisshouldnotexist", "127.0.0.1:80")
- mask, expert_outputs = hivemind.moe.client.moe._RemoteCallMany.apply(
- DUMMY,
- [[e0, e1, e2], [e2, e4], [e1, e5, e3], []],
- k_min,
- backward_k_min,
- timeout_after_k_min,
- forward_timeout,
- backward_timeout,
- detect_anomalies,
- allow_zero_outputs,
- e1.info,
- inputs,
- )
- assert mask.shape == (4, 3)
- assert expert_outputs.shape == (4, 3, hidden_dim)
- assert np.all(
- mask.data.numpy()
- == np.array([[True, True, True], [True, True, False], [True, False, True], [False, False, False]])
- ), f"Incorrect mask, {mask}"
- reference_outputs = torch.zeros_like(expert_outputs)
- reference_outputs[0, 0] = e0(inputs_clone[0:1])
- reference_outputs[0, 1] = e1(inputs_clone[0:1])
- reference_outputs[0, 2] = e2(inputs_clone[0:1])
- reference_outputs[1, 0] = e2(inputs_clone[1:2])
- reference_outputs[1, 1] = e4(inputs_clone[1:2])
- reference_outputs[2, 0] = e1(inputs_clone[2:3])
- reference_outputs[2, 2] = e3(inputs_clone[2:3])
- assert torch.allclose(expert_outputs, reference_outputs, atol=atol, rtol=0)
- proj = torch.randn(4, hidden_dim)
- loss = (expert_outputs[(0, 1, 1, 2), (0, 2, 1, 0)] * proj).sum()
- loss.backward()
- our_grad = inputs.grad.data.cpu().clone()
- reference_loss = (reference_outputs[(0, 1, 1, 2), (0, 2, 1, 0)] * proj).sum()
- reference_loss.backward()
- reference_grad = inputs_clone.grad.data.cpu().clone()
- assert torch.allclose(our_grad, reference_grad, atol=atol, rtol=0)
- @pytest.mark.forked
- def test_remote_module_call(hidden_dim=16):
- with background_server(
- num_experts=1,
- device="cpu",
- expert_cls="ffn",
- num_handlers=1,
- hidden_dim=hidden_dim,
- optim_cls=None,
- no_dht=True,
- ) as (server_endpoint, _):
- real_expert = hivemind.RemoteExpert("expert.0", server_endpoint)
- fake_expert = hivemind.RemoteExpert("oiasfjiasjf", server_endpoint)
- out1 = real_expert(torch.randn(1, hidden_dim))
- assert out1.shape == (1, hidden_dim)
- dummy_x = torch.randn(3, hidden_dim, requires_grad=True)
- out3 = real_expert(dummy_x)
- assert out3.shape == (3, hidden_dim)
- out3_again = real_expert(dummy_x[1:])
- assert torch.allclose(out3_again, out3[1:], atol=1e-5, rtol=0)
- out3_again.norm().backward()
- assert dummy_x.grad is not None and dummy_x.grad.norm() > 0
- with pytest.raises(grpc.RpcError):
- real_expert(torch.randn(3, 11))
- with pytest.raises(grpc.RpcError):
- fake_expert(dummy_x)
- @pytest.mark.forked
- def test_beam_search_correctness():
- all_expert_uids = [f"ffn.{5 + i}.{10 + j}.{15 + k}" for i in range(10) for j in range(10) for k in range(10)]
- dht = hivemind.DHT(start=True)
- assert all(declare_experts(dht, all_expert_uids, endpoint="fake-endpoint"))
- dmoe = hivemind.RemoteMixtureOfExperts(
- in_features=32, grid_size=(32, 32, 32), dht=dht, k_best=4, uid_prefix="ffn."
- )
- for i in range(25):
- input = torch.randn(32)
- grid_scores = dmoe.proj(input).split_with_sizes(dmoe.beam_search.grid_size, dim=-1)
- chosen_experts = dmoe.beam_search.find_best_experts(
- [tensor.detach().numpy() for tensor in grid_scores], beam_size=dmoe.k_best
- )
- chosen_scores = dmoe.compute_expert_scores([dim_scores[None] for dim_scores in grid_scores], [chosen_experts])[
- 0
- ]
- our_best_scores = list(chosen_scores.cpu().detach().numpy())
- # reference: independently find :beam_size: best experts with exhaustive search
- all_scores = dmoe.compute_expert_scores(
- [dim_scores.unsqueeze(0) for dim_scores in grid_scores],
- [[hivemind.RemoteExpert(uid, "") for uid in all_expert_uids]],
- )[0]
- true_best_scores = sorted(all_scores.cpu().detach().numpy(), reverse=True)[: len(chosen_experts)]
- assert np.allclose(true_best_scores, our_best_scores)
- @pytest.mark.forked
- def test_determinism(hidden_dim=16):
- atol = 1e-5
- xx = torch.randn(32, hidden_dim, requires_grad=True)
- mask = torch.randint(0, 1, (32, hidden_dim))
- with background_server(
- num_experts=1,
- device="cpu",
- expert_cls="det_dropout",
- num_handlers=1,
- hidden_dim=hidden_dim,
- optim_cls=None,
- no_dht=True,
- ) as (server_endpoint, _):
- expert = hivemind.RemoteExpert(uid=f"expert.0", endpoint=server_endpoint)
- out = expert(xx, mask)
- out_rerun = expert(xx, mask)
- (grad,) = torch.autograd.grad(out.sum(), xx, retain_graph=True)
- (grad_rerun,) = torch.autograd.grad(out_rerun.sum(), xx, retain_graph=True)
- assert torch.allclose(out, out_rerun, atol=atol, rtol=0), "Dropout layer outputs are non-deterministic."
- assert torch.allclose(grad, grad_rerun, atol=atol, rtol=0), "Gradients are non-deterministic."
- @pytest.mark.forked
- def test_compute_expert_scores():
- try:
- dht = hivemind.DHT(start=True)
- moe = hivemind.moe.RemoteMixtureOfExperts(
- dht=dht, in_features=16, grid_size=(40,), k_best=4, k_min=1, timeout_after_k_min=1, uid_prefix="expert."
- )
- gx, gy = torch.randn(4, 5, requires_grad=True), torch.randn(4, 3, requires_grad=True)
- ii = [[4, 0, 2], [3, 1, 1, 1, 3], [0], [3, 2]]
- jj = [[2, 2, 1], [0, 1, 2, 0, 1], [0], [1, 2]]
- batch_experts = [
- [
- hivemind.RemoteExpert(
- uid=f"expert.{ii[batch_i][expert_i]}.{jj[batch_i][expert_i]}", endpoint="[::]:1337"
- )
- for expert_i in range(len(ii[batch_i]))
- ]
- for batch_i in range(len(ii))
- ] # note: these experts do not exists on server, we use them only to test moe compute_expert_scores
- logits = moe.compute_expert_scores([gx, gy], batch_experts)
- torch.softmax(logits, dim=-1).norm(dim=-1).mean().backward()
- assert gx.grad.norm().item() > 0 and gy.grad.norm().item(), "compute_expert_scores didn't backprop"
- for batch_i in range(len(ii)):
- for expert_i in range(len(ii[batch_i])):
- assert torch.allclose(
- logits[batch_i, expert_i], gx[batch_i, ii[batch_i][expert_i]] + gy[batch_i, jj[batch_i][expert_i]]
- ), "compute_expert_scores returned incorrect score"
- finally:
- dht.shutdown()
- @pytest.mark.forked
- def test_client_anomaly_detection():
- HID_DIM = 16
- experts = {}
- for i in range(4):
- expert = layers.name_to_block["ffn"](HID_DIM)
- experts[f"expert.{i}"] = hivemind.ExpertBackend(
- name=f"expert.{i}",
- expert=expert,
- optimizer=torch.optim.Adam(expert.parameters()),
- args_schema=(hivemind.BatchTensorDescriptor(HID_DIM),),
- outputs_schema=hivemind.BatchTensorDescriptor(HID_DIM),
- max_batch_size=16,
- )
- experts["expert.3"].expert.ffn.weight.data[0, 0] = float("nan")
- dht = hivemind.DHT(start=True)
- server = hivemind.moe.Server(dht, experts, num_connection_handlers=1)
- server.start()
- try:
- server.ready.wait()
- dmoe = hivemind.RemoteMixtureOfExperts(
- in_features=16, grid_size=(3,), dht=dht, k_best=3, uid_prefix="expert.", detect_anomalies=True
- )
- input = torch.randn(1, 16)
- input[0, 0] = float("nan")
- with pytest.raises(ValueError):
- dmoe(input)
- input[0, 0] = 0
- output = dmoe(input)
- inf_loss = float("inf") * output.sum()
- with pytest.raises(ValueError):
- inf_loss.backward()
- dmoe = hivemind.RemoteMixtureOfExperts(
- in_features=16, grid_size=(4,), dht=dht, k_best=4, uid_prefix="expert.", detect_anomalies=True
- )
- output = dmoe(input)
- assert output.isfinite().all()
- finally:
- server.shutdown()
|