test_dht.py 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. import random
  2. import numpy as np
  3. import pytest
  4. import asyncio
  5. import hivemind
  6. from hivemind import LOCALHOST, UidEndpoint, strip_port
  7. @pytest.mark.forked
  8. def test_store_get_experts():
  9. peers = [hivemind.DHT(start=True)]
  10. for i in range(10):
  11. neighbors_i = [f'{LOCALHOST}:{node.port}' for node in random.sample(peers, min(3, len(peers)))]
  12. peers.append(hivemind.DHT(initial_peers=neighbors_i, start=True))
  13. you: hivemind.dht.DHT = random.choice(peers)
  14. theguyshetoldyounottoworryabout: hivemind.dht.DHT = random.choice(peers)
  15. expert_uids = [f"my_expert.{i}" for i in range(110)]
  16. batch_size = 10
  17. for batch_start in range(0, len(expert_uids), batch_size):
  18. you.declare_experts(expert_uids[batch_start: batch_start + batch_size], 'localhost:1234')
  19. found = theguyshetoldyounottoworryabout.get_experts(random.sample(expert_uids, 5) + ['foo', 'bar'])
  20. assert all(res is not None for res in found[:-2]), "Could not find some existing experts"
  21. assert all(res is None for res in found[-2:]), "Found non-existing experts"
  22. that_guys_expert, that_guys_port = "my_other_expert.1337", random.randint(1000, 9999)
  23. theguyshetoldyounottoworryabout.declare_experts([that_guys_expert], f'that_host:{that_guys_port}')
  24. you_notfound, you_found = you.get_experts(['foobar', that_guys_expert])
  25. assert isinstance(you_found, hivemind.RemoteExpert)
  26. assert you_found.endpoint == f'that_host:{that_guys_port}'
  27. for peer in peers:
  28. peer.shutdown()
  29. @pytest.mark.forked
  30. def test_dht_get_address(addr=LOCALHOST, dummy_endpoint='123.45.67.89:*'):
  31. node1 = hivemind.DHT(start=True, listen_on=f"0.0.0.0:*")
  32. node2 = hivemind.DHT(start=True, listen_on=f"0.0.0.0:*", initial_peers=[f"{addr}:{node1.port}"])
  33. node3 = hivemind.DHT(start=True, listen_on=f"0.0.0.0:*", initial_peers=[f"{addr}:{node2.port}"])
  34. assert addr in node3.get_visible_address(num_peers=2)
  35. node4 = hivemind.DHT(start=True, listen_on=f"0.0.0.0:*")
  36. with pytest.raises(ValueError):
  37. node4.get_visible_address()
  38. assert node4.get_visible_address(peers=[f'{addr}:{node1.port}']).endswith(addr)
  39. node5 = hivemind.DHT(start=True, listen_on=f"0.0.0.0:*", endpoint=f"{dummy_endpoint}")
  40. assert node5.get_visible_address() == strip_port(dummy_endpoint)
  41. @pytest.mark.forked
  42. def test_beam_search(dht_size=20, total_experts=128, batch_size=32, initial_peers=3, beam_size=4, parallel_rpc=16,
  43. grid_dims=(32, 32, 32)):
  44. dht = []
  45. for i in range(dht_size):
  46. neighbors_i = [f'{LOCALHOST}:{node.port}' for node in random.sample(dht, min(initial_peers, len(dht)))]
  47. dht.append(hivemind.DHT(start=True, expiration=999999, initial_peers=neighbors_i, parallel_rpc=parallel_rpc))
  48. real_experts = sorted({
  49. 'expert.' + '.'.join([str(random.randint(0, dim - 1)) for dim in grid_dims])
  50. for _ in range(total_experts)
  51. })
  52. for batch_start in range(0, len(real_experts), batch_size):
  53. random.choice(dht).declare_experts(
  54. real_experts[batch_start: batch_start + batch_size], wait=True,
  55. endpoint=f"host{batch_start // batch_size}:{random.randint(0, 65536)}")
  56. neighbors_i = [f'{LOCALHOST}:{node.port}' for node in random.sample(dht, min(initial_peers, len(dht)))]
  57. you = hivemind.DHT(start=True, expiration=999999, initial_peers=neighbors_i, parallel_rpc=parallel_rpc)
  58. for i in range(50):
  59. topk_experts = you.find_best_experts('expert.', [np.random.randn(dim) for dim in grid_dims], beam_size=beam_size)
  60. assert all(isinstance(e, hivemind.RemoteExpert) for e in topk_experts)
  61. assert len(topk_experts) == beam_size
  62. for i in range(10):
  63. batch_experts = you.batch_find_best_experts('expert.', [np.random.randn(batch_size, dim) for dim in grid_dims],
  64. beam_size=beam_size)
  65. assert isinstance(batch_experts, list) and len(batch_experts) == batch_size
  66. assert all(isinstance(e, hivemind.RemoteExpert) for experts in batch_experts for e in experts)
  67. assert all(len(experts) == beam_size for experts in batch_experts)
  68. @pytest.mark.forked
  69. def test_dht_single_node():
  70. node = hivemind.DHT(start=True, expiration=999)
  71. assert all(node.declare_experts(['expert.1', 'expert.2', 'expert.3'], f"{hivemind.LOCALHOST}:1337").values())
  72. assert len(node.declare_experts(["ffn.1", "ffn.2"], endpoint="that_place")) == 4
  73. assert len(node.declare_experts(['e.1.2.3', 'e.1.2.5', 'e.2.0'], f"{hivemind.LOCALHOST}:42")) == 7
  74. for expert in node.get_experts(['expert.3', 'expert.2']):
  75. assert expert.endpoint == f"{hivemind.LOCALHOST}:1337"
  76. assert all(node.declare_experts(['expert.5', 'expert.2'], f"{hivemind.LOCALHOST}:1337").values())
  77. found_experts = node.find_best_experts('expert.', [(0., 1., 2., 3., 4., 5., 6., 7., 8.)], beam_size=2)
  78. assert len(found_experts) == 2 and [expert.uid for expert in found_experts] == ['expert.5', 'expert.3']
  79. successors = node.get_active_successors(['e.1.2.', 'e.2.', 'e.4.5.'])
  80. assert len(successors['e.1.2.']) == 2
  81. assert successors['e.1.2.'][3] == UidEndpoint('e.1.2.3', f'{LOCALHOST}:42')
  82. assert successors['e.1.2.'][5] == UidEndpoint('e.1.2.5', f'{LOCALHOST}:42')
  83. assert len(successors['e.2.']) == 1 and successors['e.2.'][0] == UidEndpoint('e.2.0', f'{LOCALHOST}:42')
  84. assert successors['e.4.5.'] == {}
  85. initial_beam = node.get_initial_beam('expert.', (3, 2, 1, 0, -1, -2, -3), beam_size=3)
  86. assert len(initial_beam) == 3
  87. assert initial_beam[0][:2] == (2.0, 'expert.1.')
  88. assert initial_beam[1][:2] == (1.0, 'expert.2.')
  89. assert initial_beam[2][:2] == (0.0, 'expert.3.')
  90. with pytest.raises(AssertionError):
  91. node.find_best_experts('expert', [(0., 1., 2., 3., 4., 5., 6., 7., 8.)], beam_size=2)
  92. with pytest.raises(AssertionError):
  93. node.find_best_experts('expert.1', [(0., 1., 2., 3., 4., 5., 6., 7., 8.)], beam_size=2)
  94. with pytest.raises(AssertionError):
  95. node.get_active_successors(['e.1.2.', 'e.2', 'e.4.5.'])
  96. with pytest.raises(AssertionError):
  97. node.get_initial_beam('expert', (3, 2, 1, 0, -1, -2, -3), beam_size=3)
  98. def test_uid_patterns():
  99. valid_experts = ["expert.1", "expert.0", "expert.0.0.1", "expert.1337", "ffn.12.34.56.78.90",
  100. "transformer.3.2.1.0", "transformer_encoder.2", "transformer::encoder.2", "T®@nsf0rmE®🤗.321",
  101. "🤗.321", "0.1.2", "00.1.2", "7070.3.2.1.0", "block2.1.23", "LAYER.1.0.1"]
  102. valid_prefixes = ["expert.", "e.1.", "e.2.", "e.1.2.3.", "ololo.123.456.789.10."]
  103. valid_prefixes.extend([f"{uid}." for uid in valid_experts])
  104. valid_prefixes.extend([hivemind.split_uid(uid)[0] for uid in valid_experts])
  105. for uid in valid_experts:
  106. assert hivemind.is_valid_uid(uid), f"UID {uid} is valid, but was perceived as invalid"
  107. for pfx in valid_prefixes:
  108. assert hivemind.is_valid_prefix(pfx), f"Prefix {pfx} is valid, but was perceived as invalid"
  109. invalid = ["", ".", "expert.-1", "xxx.a", "expert.1x", "expert_ffn.1.abc1", "some.123.01", "expert.123.01",
  110. "e1", "e..1", "e", "e.1.2.3..4", "ffn.1..1", ".123", ".1.2.3.", ".expert", "transformer.encoder.2",
  111. "T®@nsf0rmE®.🤗.321", "layer::123", "expert.0.1.2.suffix", "0.1.2.suffix", "expert.1 something",
  112. "expert.1\n", "expert.1\n2", "expert.1 ", "expert.1\nexpert.2", "'expert.1'", '"expert.1"']
  113. invalid_experts = invalid + valid_prefixes + ["0", "123456"]
  114. invalid_prefixes = invalid + valid_experts + ["expert", ".🤗", ".expert"]
  115. for uid in invalid_experts:
  116. assert not hivemind.is_valid_uid(uid), f"UID {uid} is not valid, but was perceived as valid"
  117. for pfx in invalid_prefixes:
  118. assert not hivemind.is_valid_prefix(pfx), f"Prefix {pfx} is not valid, but was perceived as valid"
  119. @pytest.mark.forked
  120. @pytest.mark.asyncio
  121. async def test_negative_caching():
  122. peers = []
  123. for i in range(10):
  124. neighbors_i = [f'{LOCALHOST}:{node.port}' for node in random.sample(peers, min(3, len(peers)))]
  125. peers.append(hivemind.DHT(initial_peers=neighbors_i, negative_caching=False, cache_locally=False, start=True))
  126. normal_peer, writer_peer = random.sample(peers, 2)
  127. neighbors_i = [f'{LOCALHOST}:{node.port}' for node in random.sample(peers, min(3, len(peers)))]
  128. neg_caching_peer = hivemind.DHT(initial_peers=neighbors_i, negative_caching=True, cache_locally=False, start=True)
  129. assert all(writer_peer.declare_experts(['ffn.1.2.3', 'ffn.3.4.5'], 'myaddr:1234').values())
  130. # get prefixes by the peer with negative caching. Cache "no data" entries for ffn.0.*, ffn.2.*, ffn.4.*, ffn.5.*
  131. assert len(neg_caching_peer.get_initial_beam(prefix='ffn.', scores=[.1, .2, .3, .4, .5, .6], beam_size=3)) == 2
  132. node = await hivemind.DHTNode.create(initial_peers=neighbors_i)
  133. fetched = await asyncio.gather(*(node.get(f'ffn.{i}.') for i in range(10)))
  134. for i in range(6):
  135. assert fetched[i] is not None, f"node should have cached ffn.{i}."
  136. for i in range(6, len(fetched)):
  137. assert fetched[i] is None, f"node shouldn't have cached ffn.{i}."