123456789101112131415161718192021222324252627282930313233343536 |
- import argparse
- import time
- import torch
- from hivemind.proto.runtime_pb2 import CompressionType
- from hivemind.utils.compression import serialize_torch_tensor, deserialize_torch_tensor
- from hivemind.utils.logging import get_logger
- logger = get_logger(__name__)
- def benchmark_compression(tensor: torch.Tensor, compression_type: CompressionType) -> float:
- t = time.time()
- deserialize_torch_tensor(serialize_torch_tensor(tensor, compression_type))
- return time.time() - t
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('--size', type=int, default=10000000, required=False)
- parser.add_argument('--seed', type=int, default=7348, required=False)
- parser.add_argument('--num_iters', type=int, default=30, required=False)
- args = parser.parse_args()
- torch.manual_seed(args.seed)
- X = torch.randn(args.size)
- for name, compression_type in CompressionType.items():
- tm = 0
- for i in range(args.num_iters):
- tm += benchmark_compression(X, compression_type)
- tm /= args.num_iters
- logger.info(f"Compression type: {name}, time: {tm}")
|