benchmark_tensor_compression.py 1.1 KB

123456789101112131415161718192021222324252627282930313233343536
  1. import argparse
  2. import time
  3. import torch
  4. from hivemind.proto.runtime_pb2 import CompressionType
  5. from hivemind.utils.compression import serialize_torch_tensor, deserialize_torch_tensor
  6. from hivemind.utils.logging import get_logger
  7. logger = get_logger(__name__)
  8. def benchmark_compression(tensor: torch.Tensor, compression_type: CompressionType) -> float:
  9. t = time.time()
  10. deserialize_torch_tensor(serialize_torch_tensor(tensor, compression_type))
  11. return time.time() - t
  12. if __name__ == "__main__":
  13. parser = argparse.ArgumentParser()
  14. parser.add_argument('--size', type=int, default=10000000, required=False)
  15. parser.add_argument('--seed', type=int, default=7348, required=False)
  16. parser.add_argument('--num_iters', type=int, default=30, required=False)
  17. args = parser.parse_args()
  18. torch.manual_seed(args.seed)
  19. X = torch.randn(args.size)
  20. for name, compression_type in CompressionType.items():
  21. tm = 0
  22. for i in range(args.num_iters):
  23. tm += benchmark_compression(X, compression_type)
  24. tm /= args.num_iters
  25. logger.info(f"Compression type: {name}, time: {tm}")