Pārlūkot izejas kodu

Use --top_p and --top_k options in run_inference.py

Aleksandr Borzunov 3 gadi atpakaļ
vecāks
revīzija
acf688eac2
1 mainītis faili ar 6 papildinājumiem un 5 dzēšanām
  1. 6 5
      inference/run_inference.py

+ 6 - 5
inference/run_inference.py

@@ -77,7 +77,7 @@ def make_model():
 
 
 def generate(query, *, tokenizer, model,
-             batch_size, n_iters, temperature, filter_thres):
+             batch_size, n_iters, temperature, top_k, top_p):
     input_ids = torch.tensor(tokenizer(query, add_special_tokens=False, max_length=256, truncation=True)['input_ids'])
     input_ids = F.pad(input_ids, (0, 256 - len(input_ids)), value=1)
     input_ids = input_ids.repeat(batch_size, 1)
@@ -86,7 +86,7 @@ def generate(query, *, tokenizer, model,
     result = []
     for _ in tqdm(range(n_iters), desc=query, leave=False):
         output = model.model.generate_images(
-            input_ids, temperature=temperature, filter_thres=filter_thres, use_cache=True)
+            input_ids, temperature=temperature, top_k=top_k, top_p=top_p, use_cache=True)
         output = rearrange(output, 'b c h w -> b h w c').cpu().numpy()
         result.extend(output)
     return result
@@ -96,7 +96,8 @@ def main():
     parser = argparse.ArgumentParser()
     parser.add_argument('--queries', type=str, help='List of queries (*.txt, newline-separated)')
     parser.add_argument('--temperature', type=float, help='Sampling temperature')
-    parser.add_argument('--filter-thres', type=float, help='Sampling filtering threshold')
+    parser.add_argument('--top-k', type=int, default=0)
+    parser.add_argument('--top-p', type=float, default=1.0)
     parser.add_argument('--model', type=str, help='DALL-E checkpoint (*.pt)')
     parser.add_argument('--vqgan', type=str, help='VQGAN checkpoint (*.ckpt)')
     parser.add_argument('--vqgan-config', type=str, help='VQGAN config (*.yaml)')
@@ -122,14 +123,14 @@ def main():
     model.model.vae = gan
     model = model.cuda()
 
-    clip_model, clip_preprocess = clip.load("ViT-L/14", device='cuda')
+    clip_model, clip_preprocess = clip.load("ViT-B/32", device='cuda')
 
     os.makedirs(args.output_dir, exist_ok=True)
     print(f'[*] Saving results to `{args.output_dir}`')
 
     for query in tqdm(queries):
         images = generate(query, tokenizer=tokenizer, model=model, batch_size=16, n_iters=8,
-                          temperature=args.temperature, filter_thres=args.filter_thres)
+                          temperature=args.temperature, top_k=args.top_k, top_p=args.top_p)
 
         images_for_clip = torch.cat([clip_preprocess(Image.fromarray((img * 255).astype(np.uint8))).unsqueeze(0).cuda() for img in images])
         text = clip.tokenize([query]).cuda()