5
0

test_full_model.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172
  1. import pytest
  2. import torch
  3. import transformers
  4. from hivemind import get_logger
  5. from test_utils import *
  6. from transformers.generation import BeamSearchScorer
  7. from transformers.models.bloom import BloomForCausalLM
  8. from petals.client.remote_model import DistributedBloomForCausalLM
  9. logger = get_logger(__file__)
  10. @pytest.mark.forked
  11. @pytest.mark.parametrize("pass_empty_tensors", (True, False))
  12. def test_full_model_exact_match(pass_empty_tensors: bool, atol_forward=1e-3, atol_inference=1e-3):
  13. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  14. model = DistributedBloomForCausalLM.from_pretrained(
  15. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  16. )
  17. config = model.config
  18. assert isinstance(model, DistributedBloomForCausalLM)
  19. assert len(model.transformer.h) == model.config.n_layer
  20. test_inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  21. with torch.inference_mode():
  22. parallel_outputs = model.forward(test_inputs).logits
  23. assert torch.all(torch.isfinite(parallel_outputs))
  24. logger.info("Forward outputs are finite")
  25. embs = model.transformer.word_embeddings(test_inputs)
  26. embs = model.transformer.word_embeddings_layernorm(embs)
  27. recurrent_outputs = []
  28. with model.transformer.h.inference_session(max_length=embs.shape[1]) as sess:
  29. if pass_empty_tensors:
  30. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  31. for t in range(embs.shape[1]):
  32. recurrent_outputs.append(sess.step(embs[:, t : t + 1, :]))
  33. if t == int(embs.shape[1] // 2) and pass_empty_tensors:
  34. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  35. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  36. recurrent_outputs = torch.cat(recurrent_outputs, dim=1)
  37. recurrent_outputs = model.transformer.ln_f(recurrent_outputs)
  38. recurrent_outputs = model.lm_head(recurrent_outputs)
  39. assert torch.allclose(recurrent_outputs, parallel_outputs, rtol=0, atol=atol_inference)
  40. logger.info("Inference is consistent with forward")
  41. del model, embs, recurrent_outputs
  42. if REF_NAME:
  43. ref_model = transformers.BloomForCausalLM.from_pretrained(
  44. REF_NAME, low_cpu_mem_usage=True, torch_dtype=torch.float32
  45. )
  46. if config.vocab_size < ref_model.config.vocab_size:
  47. ref_model.resize_token_embeddings(config.vocab_size)
  48. logger.warning(f"Resized the reference model embeddings, new total = {ref_model.config.vocab_size}")
  49. dummy_mask = torch.ones_like(test_inputs, dtype=torch.bool)
  50. # note: this creates a dummy mask to make the test compatible with older transformer versions
  51. # prior to https://github.com/huggingface/transformers/pull/17837
  52. ref_outputs = ref_model.forward(test_inputs, attention_mask=dummy_mask).logits.float()
  53. assert torch.allclose(ref_outputs, parallel_outputs, rtol=0, atol=atol_forward)
  54. logger.warning(f"Distributed forward is consistent with {type(ref_model)}.forward")
  55. del ref_model, ref_outputs, dummy_mask
  56. else:
  57. logger.warning("Did not test exact match with local model: REF_NAME environment variable is not set")
  58. assert False
  59. @pytest.mark.forked
  60. def test_greedy_generation(max_new_tokens=4):
  61. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  62. model = DistributedBloomForCausalLM.from_pretrained(
  63. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  64. )
  65. inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  66. remote_outputs = model.generate(
  67. inputs,
  68. max_new_tokens=max_new_tokens,
  69. )
  70. hf_outputs = BloomForCausalLM.greedy_search(model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens)
  71. assert torch.allclose(remote_outputs, hf_outputs), "Greedy search results are not identical to HF"
  72. inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[
  73. "input_ids"
  74. ]
  75. remote_outputs_batch = model.generate(
  76. inputs_batch,
  77. max_new_tokens=max_new_tokens,
  78. )
  79. hf_outputs_batch = BloomForCausalLM.greedy_search(
  80. model, input_ids=inputs_batch, max_length=inputs_batch.size(1) + max_new_tokens
  81. )
  82. assert torch.allclose(
  83. remote_outputs_batch, hf_outputs_batch
  84. ), "Greedy search results are not identical to HF in multibatch mode"
  85. @pytest.mark.forked
  86. @pytest.mark.parametrize("sampling_options", [dict(), dict(temperature=100.0), dict(top_k=5), dict(top_p=0.9)])
  87. @pytest.mark.skip("Sampling is currently not consistent with outputs from Transformers")
  88. def test_sampling(sampling_options, max_new_tokens=4):
  89. torch.manual_seed(0)
  90. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  91. model = DistributedBloomForCausalLM.from_pretrained(
  92. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  93. )
  94. logits_warper = BloomForCausalLM._get_logits_warper(model, num_beams=1, **sampling_options)
  95. inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  96. with torch.random.fork_rng():
  97. remote_outputs = model.generate(
  98. inputs,
  99. max_new_tokens=max_new_tokens,
  100. do_sample=True,
  101. **sampling_options,
  102. )
  103. with torch.random.fork_rng():
  104. hf_outputs = BloomForCausalLM.sample(
  105. model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens, logits_warper=logits_warper
  106. )
  107. assert torch.allclose(remote_outputs, hf_outputs), "Sampling results are not identical to HF"
  108. inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[
  109. "input_ids"
  110. ]
  111. with torch.random.fork_rng():
  112. remote_outputs_batch = model.generate(
  113. inputs_batch,
  114. max_new_tokens=max_new_tokens,
  115. do_sample=True,
  116. **sampling_options,
  117. )
  118. with torch.random.fork_rng():
  119. hf_outputs_batch = BloomForCausalLM.sample(
  120. model,
  121. input_ids=inputs_batch,
  122. max_length=inputs_batch.size(1) + max_new_tokens,
  123. logits_warper=logits_warper,
  124. )
  125. assert torch.allclose(
  126. remote_outputs_batch, hf_outputs_batch
  127. ), "Sampling results are not identical to HF in multibatch mode"
  128. @pytest.mark.forked
  129. def test_beam_search_generation(max_new_tokens=4, num_beams=2):
  130. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  131. model = DistributedBloomForCausalLM.from_pretrained(
  132. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  133. )
  134. text = "A cat sat on a mat"
  135. inputs = tokenizer(text, return_tensors="pt")["input_ids"]
  136. remote_outputs = model.generate(
  137. inputs,
  138. max_new_tokens=max_new_tokens,
  139. num_beams=num_beams,
  140. )
  141. beam_scorer = BeamSearchScorer(
  142. batch_size=inputs.size(0),
  143. num_beams=num_beams,
  144. device=inputs.device,
  145. length_penalty=0,
  146. do_early_stopping=False,
  147. )
  148. hf_inputs = tokenizer([text] * 2, return_tensors="pt")["input_ids"]
  149. hf_outputs = BloomForCausalLM.beam_search(
  150. model, input_ids=hf_inputs, max_length=inputs.size(1) + max_new_tokens, beam_scorer=beam_scorer
  151. )
  152. assert torch.allclose(remote_outputs, hf_outputs), "Beam search results are not identical to HF"