5
0

benchmark_forward.py 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475
  1. #!/usr/bin/env python3
  2. import argparse
  3. import multiprocessing as mp
  4. from time import perf_counter
  5. import numpy as np
  6. import torch
  7. from hivemind.utils.logging import get_logger
  8. from petals import AutoDistributedModel
  9. from petals.constants import DTYPE_MAP, PUBLIC_INITIAL_PEERS
  10. logger = get_logger()
  11. def main():
  12. parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
  13. parser.add_argument("--model", type=str, required=True, help="Model")
  14. parser.add_argument("--initial_peers", type=str, nargs="+", default=PUBLIC_INITIAL_PEERS, help="Initial peers")
  15. parser.add_argument("--torch_dtype", type=str, default="float32", help="Torch dtype")
  16. parser.add_argument("--n_processes", type=str, default=1, help="Number of concurrent processes")
  17. parser.add_argument("--seq_len", type=int, default=128, help="Sequence length")
  18. parser.add_argument("--n_steps", type=int, default=100, help="Number of benchmark steps")
  19. parser.add_argument("--batch_size", type=int, required=True, help="Batch size")
  20. parser.add_argument("--warmup_steps", type=int, default=1, help="Number of warmup steps")
  21. args = parser.parse_args()
  22. if args.n_processes == "n_gpus":
  23. args.n_processes = torch.cuda.device_count()
  24. else:
  25. args.n_processes = int(args.n_processes)
  26. pipe_recv, pipe_send = mp.Pipe(duplex=False)
  27. processes = [mp.Process(target=benchmark_forward, args=(i, args, pipe_send)) for i in range(args.n_processes)]
  28. for proc in processes:
  29. proc.start()
  30. for proc in processes:
  31. proc.join()
  32. speed = np.mean([pipe_recv.recv() for _ in range(args.n_processes)])
  33. logger.info(f"Final result: {speed=:.2f}")
  34. @torch.inference_mode()
  35. def benchmark_forward(process_idx, args, result_pipe):
  36. model = AutoDistributedModel.from_pretrained(
  37. args.model,
  38. initial_peers=args.initial_peers,
  39. torch_dtype=DTYPE_MAP[args.torch_dtype],
  40. )
  41. logger.info(f"Created model: {process_idx=} {model.device=}")
  42. torch.manual_seed(42)
  43. step_times = []
  44. for step in range(args.warmup_steps + args.n_steps):
  45. start_time = perf_counter()
  46. input_ids = torch.randint(0, model.config.vocab_size, size=(args.batch_size, args.seq_len))
  47. logger.info(f"{process_idx=} Fwd begin {input_ids.shape=}")
  48. h = model(input_ids)
  49. # We don't use model.lm_head
  50. logger.info(f"{process_idx=} Fwd end")
  51. if step >= args.warmup_steps:
  52. step_times.append(perf_counter() - start_time)
  53. speed = input_ids.numel() / np.mean(step_times)
  54. logger.info(f"{process_idx=} {step=} {speed=:.2f}")
  55. result_pipe.send(speed)
  56. if __name__ == "__main__":
  57. main()