test_block_exact_match.py 1.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. import random
  2. import hivemind
  3. import pytest
  4. import torch
  5. import transformers
  6. from hivemind import P2PHandlerError
  7. from test_utils import *
  8. from petals.client import DistributedBloomConfig
  9. from petals.bloom.from_pretrained import load_pretrained_block
  10. from petals.client.remote_sequential import RemoteTransformerBlock
  11. from petals.data_structures import UID_DELIMITER
  12. from petals.dht_utils import get_remote_module
  13. @pytest.mark.forked
  14. def test_remote_block_exact_match(atol_forward=1e-5, atol_inference=1e-3):
  15. dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
  16. config = DistributedBloomConfig.from_pretrained(MODEL_NAME)
  17. for block_index in random.sample(range(config.n_layer), 3):
  18. remote_block = get_remote_module(dht, f"{MODEL_NAME}{UID_DELIMITER}{block_index}", config)
  19. assert isinstance(remote_block, RemoteTransformerBlock)
  20. inputs = torch.randn(1, 8, config.hidden_size)
  21. outputs_forward = remote_block(inputs)
  22. outputs_inference = []
  23. with remote_block.inference_session(max_length=inputs.shape[1]) as sess:
  24. for i in range(inputs.shape[1]):
  25. outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
  26. # test that max length is respected
  27. with pytest.raises(ValueError, match=r"Maximum length exceeded") as exc_info:
  28. sess.step(inputs[:, -1:, :])
  29. assert "Maximum length exceeded" in repr(exc_info.value)
  30. outputs_inference = torch.cat(outputs_inference, dim=1)
  31. ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32)
  32. (outputs_local,) = ref_block(inputs)
  33. assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward)
  34. assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)