test_server_stats.py 1.8 KB

123456789101112131415161718192021222324252627282930313233343536373839
  1. import time
  2. import hivemind
  3. import pytest
  4. import torch
  5. from petals.client import DistributedBloomConfig
  6. from petals.data_structures import UID_DELIMITER
  7. from petals.dht_utils import get_remote_sequence
  8. from petals.server.handler import CACHE_TOKENS_AVAILABLE
  9. from test_utils import *
  10. @pytest.mark.forked
  11. def test_server_info(block_from: int = 22, block_to: int = 24, max_length: int = 100, max_length2: int = 50):
  12. dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
  13. config = DistributedBloomConfig.from_pretrained(MODEL_NAME)
  14. blocks1 = get_remote_sequence(dht, block_from, block_to, config, f"{MODEL_NAME}{UID_DELIMITER}")
  15. blocks2 = get_remote_sequence(dht, block_to - 1, block_to, config, f"{MODEL_NAME}{UID_DELIMITER}")
  16. info_before = blocks1.sequence_manager.rpc_info
  17. with blocks1.inference_session(max_length=max_length) as sess:
  18. sess.step(torch.randn(1, 1, config.hidden_size))
  19. blocks1.sequence_manager._rpc_info = None # invalidate cache
  20. info_inside = blocks1.sequence_manager.rpc_info
  21. with blocks2.inference_session(max_length=max_length2) as sess2:
  22. sess2.step(torch.randn(1, 1, config.hidden_size))
  23. blocks2.sequence_manager._rpc_info = None # invalidate cache
  24. info_inside2 = blocks2.sequence_manager.rpc_info
  25. time.sleep(0.1)
  26. blocks1.sequence_manager._rpc_info = None # invalidate cache
  27. info_after = blocks1.sequence_manager.rpc_info
  28. assert info_before[CACHE_TOKENS_AVAILABLE] == info_after[CACHE_TOKENS_AVAILABLE]
  29. assert info_before[CACHE_TOKENS_AVAILABLE] - info_inside[CACHE_TOKENS_AVAILABLE] == max_length * len(blocks1)
  30. assert info_inside[CACHE_TOKENS_AVAILABLE] - info_inside2[CACHE_TOKENS_AVAILABLE] == max_length2 * len(blocks2)