test_full_model.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. import peft
  2. import pytest
  3. import torch
  4. import transformers
  5. from hivemind import get_logger
  6. from transformers.generation import BeamSearchScorer
  7. from transformers.models.bloom import BloomForCausalLM
  8. from petals import DistributedBloomForCausalLM
  9. from test_utils import *
  10. logger = get_logger(__name__)
  11. @pytest.mark.forked
  12. @pytest.mark.parametrize("use_peft", (True, False) if ADAPTER_NAME else (False,))
  13. @pytest.mark.parametrize("pass_empty_tensors", (True, False))
  14. def test_full_model_exact_match(use_peft: bool, pass_empty_tensors: bool, atol_forward=1e-3, atol_inference=1e-3):
  15. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  16. model = DistributedBloomForCausalLM.from_pretrained(
  17. MODEL_NAME,
  18. initial_peers=INITIAL_PEERS,
  19. low_cpu_mem_usage=True,
  20. torch_dtype=torch.float32,
  21. active_adapter=ADAPTER_NAME if use_peft else None,
  22. )
  23. config = model.config
  24. assert isinstance(model, DistributedBloomForCausalLM)
  25. assert len(model.transformer.h) == model.config.num_hidden_layers
  26. test_inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  27. with torch.inference_mode():
  28. parallel_outputs = model.forward(test_inputs).logits
  29. assert torch.all(torch.isfinite(parallel_outputs))
  30. logger.info("Forward outputs are finite")
  31. embs = model.transformer.word_embeddings(test_inputs)
  32. embs = model.transformer.word_embeddings_layernorm(embs)
  33. recurrent_outputs = []
  34. with model.transformer.h.inference_session(max_length=embs.shape[1]) as sess:
  35. if pass_empty_tensors:
  36. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  37. for t in range(embs.shape[1]):
  38. recurrent_outputs.append(sess.step(embs[:, t : t + 1, :]))
  39. if t == int(embs.shape[1] // 2) and pass_empty_tensors:
  40. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  41. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  42. recurrent_outputs = torch.cat(recurrent_outputs, dim=1)
  43. recurrent_outputs = model.transformer.ln_f(recurrent_outputs)
  44. recurrent_outputs = model.lm_head(recurrent_outputs)
  45. assert torch.allclose(recurrent_outputs, parallel_outputs, rtol=0, atol=atol_inference)
  46. logger.info("Inference is consistent with forward")
  47. del model, embs, recurrent_outputs
  48. if REF_NAME:
  49. ref_model = transformers.BloomForCausalLM.from_pretrained(
  50. REF_NAME, low_cpu_mem_usage=True, torch_dtype=torch.float32
  51. )
  52. if use_peft:
  53. ref_model = peft.PeftModel.from_pretrained(ref_model, ADAPTER_NAME)
  54. ref_model.train(False)
  55. if config.vocab_size < ref_model.config.vocab_size:
  56. ref_model.resize_token_embeddings(config.vocab_size)
  57. logger.warning(f"Resized the reference model embeddings, new total = {ref_model.config.vocab_size}")
  58. dummy_mask = torch.ones_like(test_inputs, dtype=torch.bool)
  59. # note: this creates a dummy mask to make the test compatible with older transformer versions
  60. # prior to https://github.com/huggingface/transformers/pull/17837
  61. ref_outputs = ref_model.forward(test_inputs, attention_mask=dummy_mask).logits.float()
  62. assert torch.allclose(ref_outputs, parallel_outputs, rtol=0, atol=atol_forward)
  63. logger.warning(f"Distributed forward is consistent with {type(ref_model)}.forward")
  64. del ref_model, ref_outputs, dummy_mask
  65. else:
  66. logger.warning("Did not test exact match with local model: REF_NAME environment variable is not set")
  67. assert False
  68. @pytest.mark.forked
  69. def test_greedy_generation(max_new_tokens=4):
  70. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  71. model = DistributedBloomForCausalLM.from_pretrained(
  72. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  73. )
  74. inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  75. remote_outputs = model.generate(
  76. inputs,
  77. max_new_tokens=max_new_tokens,
  78. )
  79. hf_outputs = BloomForCausalLM.greedy_search(model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens)
  80. assert torch.allclose(remote_outputs, hf_outputs), "Greedy search results are not identical to HF"
  81. inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[
  82. "input_ids"
  83. ]
  84. remote_outputs_batch = model.generate(
  85. inputs_batch,
  86. max_new_tokens=max_new_tokens,
  87. )
  88. hf_outputs_batch = BloomForCausalLM.greedy_search(
  89. model, input_ids=inputs_batch, max_length=inputs_batch.size(1) + max_new_tokens
  90. )
  91. assert torch.allclose(
  92. remote_outputs_batch, hf_outputs_batch
  93. ), "Greedy search results are not identical to HF in multibatch mode"
  94. @pytest.mark.forked
  95. @pytest.mark.parametrize("sampling_options", [dict(), dict(temperature=100.0), dict(top_k=5), dict(top_p=0.9)])
  96. @pytest.mark.skip("Sampling is currently not consistent with outputs from Transformers")
  97. def test_sampling(sampling_options, max_new_tokens=4):
  98. torch.manual_seed(0)
  99. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  100. model = DistributedBloomForCausalLM.from_pretrained(
  101. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  102. )
  103. logits_warper = BloomForCausalLM._get_logits_warper(model, num_beams=1, **sampling_options)
  104. inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  105. with torch.random.fork_rng():
  106. remote_outputs = model.generate(
  107. inputs,
  108. max_new_tokens=max_new_tokens,
  109. do_sample=True,
  110. **sampling_options,
  111. )
  112. with torch.random.fork_rng():
  113. hf_outputs = BloomForCausalLM.sample(
  114. model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens, logits_warper=logits_warper
  115. )
  116. assert torch.allclose(remote_outputs, hf_outputs), "Sampling results are not identical to HF"
  117. inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[
  118. "input_ids"
  119. ]
  120. with torch.random.fork_rng():
  121. remote_outputs_batch = model.generate(
  122. inputs_batch,
  123. max_new_tokens=max_new_tokens,
  124. do_sample=True,
  125. **sampling_options,
  126. )
  127. with torch.random.fork_rng():
  128. hf_outputs_batch = BloomForCausalLM.sample(
  129. model,
  130. input_ids=inputs_batch,
  131. max_length=inputs_batch.size(1) + max_new_tokens,
  132. logits_warper=logits_warper,
  133. )
  134. assert torch.allclose(
  135. remote_outputs_batch, hf_outputs_batch
  136. ), "Sampling results are not identical to HF in multibatch mode"
  137. @pytest.mark.forked
  138. def test_beam_search_generation(max_new_tokens=4, num_beams=2):
  139. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  140. model = DistributedBloomForCausalLM.from_pretrained(
  141. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  142. )
  143. text = "A cat sat on a mat"
  144. inputs = tokenizer(text, return_tensors="pt")["input_ids"]
  145. remote_outputs = model.generate(
  146. inputs,
  147. max_new_tokens=max_new_tokens,
  148. num_beams=num_beams,
  149. )
  150. beam_scorer = BeamSearchScorer(
  151. batch_size=inputs.size(0),
  152. num_beams=num_beams,
  153. device=inputs.device,
  154. length_penalty=0,
  155. do_early_stopping=False,
  156. )
  157. hf_inputs = tokenizer([text] * 2, return_tensors="pt")["input_ids"]
  158. hf_outputs = BloomForCausalLM.beam_search(
  159. model, input_ids=hf_inputs, max_length=inputs.size(1) + max_new_tokens, beam_scorer=beam_scorer
  160. )
  161. assert torch.allclose(remote_outputs, hf_outputs), "Beam search results are not identical to HF"