123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- import random
- from typing import Optional
- import pytest
- import torch
- from hivemind import TensorDescriptor
- from petals.server.memory_cache import MemoryCache, AllocationFailed
- import asyncio
- from petals.utils.misc import get_size_in_bytes
- import multiprocessing as mp
- import pytest_asyncio # make sure the module exists; otherwise the test will be skipped
- def _make_tensor_descriptor(num_bytes: int, dtype: Optional[torch.dtype] = None):
- if dtype is None:
- dtype = random.choice((torch.int64, torch.int8, torch.uint8, torch.float32, torch.bfloat16, torch.bool))
- elem_size_bytes = get_size_in_bytes(dtype)
- descr = TensorDescriptor.from_tensor(torch.empty((num_bytes // elem_size_bytes,), dtype=dtype))
- return descr
- @pytest.mark.asyncio
- async def test_cache_usage():
- cache = MemoryCache(max_size_bytes=2048)
- alloc_event, dealloc_e_event, dealloc_bcd_event, dealloc_a_event = mp.Event(), mp.Event(), mp.Event(), mp.Event()
- pipe_receiver, pipe_sender = mp.Pipe(duplex=False)
- with pytest.raises(AssertionError):
- async with cache.allocate_cache(_make_tensor_descriptor(123)):
- pass # fails because cache must be allocated from another process
- descr_a = TensorDescriptor.from_tensor(torch.empty(768, dtype=torch.uint8)) # 768 bytes
- descr_b = TensorDescriptor.from_tensor(torch.empty((), dtype=torch.float64)) # 8 bytes
- descr_c = TensorDescriptor.from_tensor(torch.empty((33, ), dtype=torch.bool)) # 33 bytes
- descr_d = TensorDescriptor.from_tensor(torch.empty((0, ), dtype=torch.int64)) # 0 bytes
- descr_e = TensorDescriptor.from_tensor(torch.empty((96, 8), dtype=torch.bfloat16)) # 1536 bytes
- descr_f = TensorDescriptor.from_tensor(torch.empty((1792,), dtype=torch.uint8)) # 1792 bytes
- descr_g = TensorDescriptor.from_tensor(torch.empty((1793,), dtype=torch.uint8)) # 1792 bytes
- async def _allocate_and_wait(dealloc_event, *descrs, timeout=None):
- loop = asyncio.get_event_loop()
- async with cache.allocate_cache(*descrs, timeout=timeout) as handles:
- pipe_sender.send(handles)
- await loop.run_in_executor(None, dealloc_event.wait)
- async def _allocate_af():
- alloc_event.wait()
- print("BEGAN AF")
- try:
- async with cache.allocate_cache(descr_g):
- allocate_f_task = asyncio.create_task(_allocate_and_wait(mp.Event(), descr_f)) # klogs the cache
- print("CANCELLED")
- raise asyncio.CancelledError()
- except asyncio.CancelledError:
- pass
- allocate_f_task.cancel() # unklog the cache
- allocate_a_task = asyncio.create_task(_allocate_and_wait(dealloc_a_event, descr_a))
- await allocate_a_task
- alloc_process1 = mp.Process(target=lambda: asyncio.run(_allocate_af()), daemon=True)
- alloc_process1.start()
- async def _allocate_bcde():
- await asyncio.sleep(0.2) # ensure that the other tensor is always allocated (and sent through pipe) first
- print("BEGAN BCDE")
- allocate_bcd_task = asyncio.create_task(_allocate_and_wait(dealloc_bcd_event, descr_b, descr_c, descr_d))
- allocate_e_task = asyncio.create_task(_allocate_and_wait(dealloc_e_event, descr_e)) # doesn't fit
- await asyncio.wait({allocate_e_task, allocate_bcd_task}, return_when=asyncio.ALL_COMPLETED)
- alloc_process2 = mp.Process(target=lambda: asyncio.run(_allocate_bcde()), daemon=True)
- alloc_process2.start()
- assert cache.current_size_bytes == 0
- alloc_event.set()
- handle_a, = pipe_receiver.recv()
- handle_b, handle_c, handle_d = pipe_receiver.recv()
- with cache.use_cache(handle_a) as (tensor_a,):
- assert tensor_a.dtype == torch.uint8
- tensor_a[2:5] = torch.tensor((42, 43, 44))
- with cache.use_cache(handle_a, handle_b, handle_d) as (tensor_a, tensor_b, tensor_d):
- assert tensor_b.dtype == torch.float64 and tensor_b.numel() == 1 and tensor_b.ndim == 0
- assert tensor_d.dtype == torch.int64 and tensor_d.numel() == 0
- tensor_a += 1
- tensor_b[...] = -1.337
- assert cache.current_size_bytes == 809 # this checks a,b,c,d are allocated but b still awaits memory
- dealloc_bcd_event.set()
- await asyncio.sleep(0.1)
- assert cache.current_size_bytes == 768 # only tensor a is allocated
- with pytest.raises(KeyError):
- with cache.use_cache(handle_a, handle_b):
- pass # one of handles (c) is deallocated
- with pytest.raises(KeyError):
- with cache.use_cache(handle_d):
- pass # handle_e is deallocated, even though it is never used
- with cache.use_cache(handle_a) as (tensor_a,):
- assert tuple(tensor_a[2:5]) == (43, 44, 45)
- dealloc_a_event.set()
- handle_e, = pipe_receiver.recv() # e can finally be allocated
- assert cache.current_size_bytes == 1536 # tensor e should finally be able to allocate
- with pytest.raises(KeyError):
- with cache.use_cache(handle_a):
- pass # tensor a is no longer allocated
- with cache.use_cache(handle_e) as (tensor_e,):
- assert tensor_e.dtype == torch.bfloat16 and tensor_e.shape == (96, 8)
- dealloc_e_event.set()
- alloc_process1.join(1)
- alloc_process2.join(1)
- assert cache.current_size_bytes == 0
- assert alloc_process1.exitcode == 0, "allocation process 1 failed or did not finish, see stderr for details"
- assert alloc_process2.exitcode == 0, "allocation process 2 failed or did not finish, see stderr for details"
- # cache.runtime_pid += 1 # pretend we're another process
- # async with cache.allocate_cache(_make_tensor_descriptor(768)) as a:
- # pass
- #
- #
- # async with cache.allocate_cache(_make_tensor_descriptor(768)):
- # async with cache.allocate_cache(_make_tensor_descriptor(1024)):
- # async with cache.allocate_cache(_make_tensor_descriptor(512), _make_tensor_descriptor(64)):
- # async with cache.allocate_cache(_make_tensor_descriptor(1536)):
- # with pytest.raises(TimeoutError):
- # async with cache.allocate_cache(_make_tensor_descriptor(256), ):
- # pass
- # async with cache.allocate_cache(_make_tensor_descriptor(192)):
- # pass
|