test_full_model.py 2.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. import pytest
  2. import torch
  3. import transformers
  4. from hivemind import get_logger, use_hivemind_log_handler
  5. from test_utils import *
  6. from src.client.remote_model import DistributedBloomForCausalLM
  7. use_hivemind_log_handler("in_root_logger")
  8. logger = get_logger(__file__)
  9. @pytest.mark.forked
  10. def test_full_model_exact_match(atol_forward=1e-3, atol_inference=1e-3):
  11. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  12. model = DistributedBloomForCausalLM.from_pretrained(
  13. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  14. )
  15. assert isinstance(model, DistributedBloomForCausalLM)
  16. assert len(model.transformer.h) == model.config.n_layer
  17. test_inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  18. with torch.inference_mode():
  19. parallel_outputs = model.forward(test_inputs).logits
  20. assert torch.all(torch.isfinite(parallel_outputs))
  21. logger.info("Forward outputs are finite")
  22. embs = model.transformer.word_embeddings(test_inputs)
  23. embs = model.transformer.word_embeddings_layernorm(embs)
  24. recurrent_outputs = []
  25. with model.transformer.h.inference_session() as sess:
  26. for t in range(embs.shape[1]):
  27. recurrent_outputs.append(sess.step(embs[:, t : t + 1, :]))
  28. recurrent_outputs = torch.cat(recurrent_outputs, dim=1)
  29. recurrent_outputs = model.transformer.ln_f(recurrent_outputs)
  30. recurrent_outputs = model.lm_head(recurrent_outputs)
  31. assert torch.allclose(recurrent_outputs, parallel_outputs, rtol=0, atol=atol_inference)
  32. logger.info("Inference is consistent with forward")
  33. del model, embs, recurrent_outputs
  34. if REF_NAME:
  35. ref_model = transformers.BloomForCausalLM.from_pretrained(
  36. REF_NAME, low_cpu_mem_usage=True, torch_dtype=torch.float32
  37. )
  38. dummy_mask = torch.ones_like(test_inputs, dtype=torch.bool)
  39. # note: this creates a dummy mask to make the test compatible with older transformer versions
  40. # prior to https://github.com/huggingface/transformers/pull/17837
  41. ref_outputs = ref_model.forward(test_inputs, attention_mask=dummy_mask).logits.float()
  42. assert torch.allclose(ref_outputs, parallel_outputs, rtol=0, atol=atol_forward)
  43. logger.warning(f"Distributed forward is consistent with {type(ref_model)}.forward")
  44. del ref_model, ref_outputs, dummy_mask
  45. else:
  46. logger.warning("Did not test exact match with local model: REF_NAME environment variable is not set")
  47. assert False