123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- from dataclasses import dataclass
- from typing import Dict, List, Optional, Tuple
- import numpy as np
- from hivemind import PeerID, get_logger
- from src.data_structures import RemoteModuleInfo, ServerState
- __all__ = ["choose_best_blocks", "should_choose_other_blocks"]
- logger = get_logger(__file__)
- @dataclass
- class Span:
- start: int
- end: int
- throughput: float
- @property
- def length(self):
- return self.end - self.start
- def move_to(self, new_start: int) -> None:
- self.start, self.end = new_start, new_start + self.length
- def _compute_spans(module_infos: List[Optional[RemoteModuleInfo]]) -> Tuple[Dict[PeerID, Span], np.ndarray]:
- spans = {}
- throughputs = np.zeros(len(module_infos))
- for block, module in enumerate(module_infos):
- if module is None:
- continue
- for peer_id, server in module.servers.items():
- if server.state == ServerState.OFFLINE:
- continue
- if peer_id in spans:
- spans[peer_id].start = min(spans[peer_id].start, block)
- spans[peer_id].end = max(spans[peer_id].start, block + 1)
- else:
- spans[peer_id] = Span(start=block, end=block + 1, throughput=server.throughput)
- throughputs[block] += server.throughput
- return spans, throughputs
- def _choose_best_start(throughputs: np.ndarray, num_blocks: int, cur_start: Optional[int]) -> int:
- options = (
- (sorted(throughputs[i : i + num_blocks]), i != cur_start, i)
- for i in range(0, len(throughputs) - num_blocks + 1)
- )
- return min(options)[-1]
- def choose_best_blocks(num_blocks: int, module_infos: List[Optional[RemoteModuleInfo]]) -> List[int]:
- _, throughputs = _compute_spans(module_infos)
- start = _choose_best_start(throughputs, num_blocks, None)
- return list(range(start, start + num_blocks))
- def should_choose_other_blocks(
- local_peer_id: PeerID, module_infos: List[Optional[RemoteModuleInfo]], balance_quality: float
- ) -> bool:
- if balance_quality > 1.0:
- return True # Forces rebalancing on each check (may be used for debugging purposes)
- spans, throughputs = _compute_spans(module_infos)
- initial_throughput = throughputs.min()
- assert local_peer_id in spans, "Span served by this server is not present in the DHT"
- local_span = spans[local_peer_id]
- throughputs[local_span.start : local_span.end] -= local_span.throughput
- new_start = _choose_best_start(throughputs, local_span.length, local_span.start)
- if local_span.start == new_start:
- return False # This server is on its best place already
- local_span.move_to(new_start)
- throughputs[local_span.start : local_span.end] += local_span.throughput
- moved = True
- while moved:
- servers = list(spans.keys())
- np.random.shuffle(servers)
- moved = False
- for peer_id in servers:
- span = spans[peer_id]
- throughputs[span.start : span.end] -= span.throughput
- new_start = _choose_best_start(throughputs, span.length, span.start)
- if span.start != new_start:
- span.move_to(new_start)
- moved = True
- throughputs[span.start : span.end] += span.throughput
- new_throughput = throughputs.min()
- actual_quality = initial_throughput / new_throughput
- logger.info(f"Swarm balance quality: {actual_quality * 100:.1f}%")
- eps = 1e-6
- return actual_quality < balance_quality - eps
|