123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- import bitsandbytes as bnb
- import pytest
- import torch
- from bitsandbytes import functional as F
- from petals.utils.linear8bitlt_patch import CustomLinear8bitLt, get_inverse_transform_indices, undo_layout
- @pytest.mark.skipif(
- not torch.cuda.is_available() or torch.cuda.get_device_capability() < (7, 5),
- reason="this test requires a turing-generation or newer GPU, see bitsandbytes docs",
- )
- def test_layout_exact_match():
- x = (torch.randn(14336 * 3, 14336) * 10).to(torch.int8).cuda()
- for tile_size, order in ((8, 32), "col_turing"), ((32, 32), "col_ampere"):
- transform = lambda x: F.transform(x.cuda(), from_order="row", to_order=order)[0].to(x.device)
- tile_indices = get_inverse_transform_indices(transform, tile_size)
- cxb = transform(x)
- torch.cuda.synchronize()
- restored_x = undo_layout(cxb, tile_indices)
- torch.cuda.synchronize()
- assert restored_x.is_contiguous()
- assert torch.all(torch.eq(restored_x, x))
- @pytest.mark.skipif(
- not torch.cuda.is_available() or torch.cuda.get_device_capability() < (7, 5),
- reason="this test requires a turing-generation or newer GPU, see bitsandbytes docs",
- )
- def test_linear_exact_match():
- linear = torch.nn.Linear(1024, 3072)
- x = torch.randn(3, 1024, dtype=torch.half)
- linear8bitlt = bnb.nn.Linear8bitLt(
- linear.in_features,
- linear.out_features,
- linear.bias is not None,
- has_fp16_weights=False,
- threshold=6.0,
- memory_efficient_backward=True,
- )
- linear8bitlt.weight = bnb.nn.Int8Params(linear.weight.data.clone(), requires_grad=False, has_fp16_weights=False).to(
- linear.weight.dtype
- )
- linear8bitlt.bias = linear.bias
- linear8bitlt.cuda()
- linear_custom = CustomLinear8bitLt(
- linear.in_features,
- linear.out_features,
- linear.bias is not None,
- has_fp16_weights=False,
- threshold=6.0,
- )
- linear_custom.weight = bnb.nn.Int8Params(
- linear.weight.data.clone(), requires_grad=False, has_fp16_weights=False
- ).to(linear.weight.dtype)
- linear_custom.bias = linear.bias
- linear_custom.cuda()
- x_ref = x.clone().cuda().requires_grad_(True)
- x_ours = x.clone().cuda().requires_grad_(True)
- fx_ref = linear8bitlt(x_ref).float()
- grad_proj = torch.randn_like(fx_ref)
- (fx_ref * grad_proj).mean().backward()
- fx_ours = linear_custom(x_ours).float()
- (fx_ours * grad_proj).mean().backward()
- assert torch.equal(fx_ref, fx_ours)
- assert torch.allclose(x_ref.grad, x_ours.grad)
- assert not linear_custom.state.has_fp16_weights
- assert linear_custom.state.CB is None
- assert linear_custom.state.CxB is not None
- @pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
- def test_linear_no_igemmlt():
- linear = torch.nn.Linear(1024, 3072)
- x = torch.randn(3, 1024, dtype=torch.half)
- linear_custom = CustomLinear8bitLt(
- linear.in_features,
- linear.out_features,
- linear.bias is not None,
- has_fp16_weights=False,
- threshold=6.0,
- )
- linear_custom.state.force_no_igemmlt = True
- linear_custom.weight = bnb.nn.Int8Params(
- linear.weight.data.clone(), requires_grad=False, has_fp16_weights=False
- ).to(linear.weight.dtype)
- linear_custom.bias = linear.bias
- linear_custom.cuda()
- linear.half().cuda()
- x_ref = x.clone().cuda().requires_grad_(True)
- x_ours = x.clone().cuda().requires_grad_(True)
- fx_ref = linear(x_ref).float()
- grad_proj = torch.randn_like(fx_ref)
- (fx_ref * grad_proj).mean().backward()
- fx_ours = linear_custom(x_ours).float()
- (fx_ours * grad_proj).mean().backward()
- assert torch.allclose(fx_ref, fx_ours, atol=0.02)
- assert torch.allclose(x_ref.grad, x_ours.grad, atol=0.01)
- assert not linear_custom.state.has_fp16_weights
- assert linear_custom.state.CB is not None
- assert linear_custom.state.CxB is None
|