run_server.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. from functools import partial
  2. from pathlib import Path
  3. import configargparse
  4. import torch
  5. from hivemind.moe import Server
  6. from hivemind.moe.server.layers import schedule_name_to_scheduler
  7. from hivemind.proto.runtime_pb2 import CompressionType
  8. from hivemind.utils.limits import increase_file_limit
  9. from hivemind.utils.logging import get_logger, use_hivemind_log_handler
  10. from client import MAX_NODES
  11. use_hivemind_log_handler("in_root_logger")
  12. logger = get_logger(__name__)
  13. def main():
  14. # fmt:off
  15. parser = configargparse.ArgParser(default_config_files=["config.yml"])
  16. parser.add('-c', '--config', required=False, is_config_file=True, help='config file path')
  17. parser.add_argument('--dht_prefix', type=str, required=True)
  18. parser.add_argument('--expert_cls', type=str, default='ffn', required=False,
  19. help="expert type from test_utils.layers, e.g. 'ffn', 'transformer', 'det_dropout' or 'nop'")
  20. parser.add_argument('--hidden_dim', type=int, default=1024, required=False, help='main dimension for expert_cls')
  21. parser.add_argument('--host_maddrs', type=str, nargs='+', default=['/ip4/0.0.0.0/tcp/0'], required=False,
  22. help='Multiaddrs to listen for external connections from other p2p instances; default: all IPv4 and TCP: /ip4/0.0.0.0/tcp/0')
  23. parser.add_argument('--announce_maddrs', type=list, nargs='+', default=None, required=False,
  24. help='Visible multiaddrs the host announces for external connections from other p2p instances')
  25. parser.add_argument('--num_handlers', type=int, default=None, required=False,
  26. help='server will use this many processes to handle incoming requests')
  27. parser.add_argument('--min_batch_size', type=int, default=1,
  28. help='Minimum required batch size for all expert operations')
  29. parser.add_argument('--max_batch_size', type=int, default=16384,
  30. help='The total number of examples in the same batch will not exceed this value')
  31. parser.add_argument('--device', type=str, default=None, required=False,
  32. help='all experts will use this device in torch notation; default: cuda if available else cpu')
  33. parser.add_argument('--optimizer', type=str, default='adam', required=False, help='adam, sgd or none')
  34. parser.add_argument('--scheduler', type=str, choices=schedule_name_to_scheduler.keys(), default='none',
  35. help='LR scheduler type to use')
  36. parser.add_argument('--num_warmup_steps', type=int, required=False,
  37. help='The number of warmup steps for LR schedule')
  38. parser.add_argument('--update_period', type=float, required=False, default=30,
  39. help='Server will report experts to DHT once in this many seconds')
  40. parser.add_argument('--expiration', type=float, required=False, default=None,
  41. help='DHT entries will expire after this many seconds')
  42. parser.add_argument('--num_training_steps', type=int, required=False, help='The total number of steps for LR schedule')
  43. parser.add_argument('--clip_grad_norm', type=float, required=False, help='Maximum gradient norm used for clipping')
  44. parser.add_argument('--initial_peers', type=str, nargs='*', required=False, default=[],
  45. help='multiaddrs of one or more active DHT peers (if you want to join an existing DHT)')
  46. parser.add_argument('--increase_file_limit', action='store_true',
  47. help='On *nix, this will increase the max number of processes '
  48. 'a server can spawn before hitting "Too many open files"; Use at your own risk.')
  49. parser.add_argument('--compression', type=str, default='NONE', required=False, help='Tensor compression for gRPC')
  50. parser.add_argument('--checkpoint_dir', type=Path, required=False, help='Directory to store expert checkpoints')
  51. parser.add_argument('--stats_report_interval', type=int, required=False,
  52. help='Interval between two reports of batch processing performance statistics')
  53. parser.add_argument('--custom_module_path', type=str, required=False,
  54. help='Path of a file with custom nn.modules, wrapped into special decorator')
  55. parser.add_argument('--identity_path', type=str, required=False, help='Path to identity file to be used in P2P')
  56. # fmt:on
  57. args = vars(parser.parse_args())
  58. args.pop("config", None)
  59. optimizer = args.pop("optimizer")
  60. if optimizer == "adam":
  61. optim_cls = torch.optim.Adam
  62. elif optimizer == "sgd":
  63. optim_cls = partial(torch.optim.SGD, lr=0.01)
  64. elif optimizer == "none":
  65. optim_cls = None
  66. else:
  67. raise ValueError("optim_cls must be adam, sgd or none")
  68. args['num_experts'] = 1
  69. dht_prefix = args.pop("dht_prefix", None)
  70. args['expert_pattern'] = f"{dht_prefix}.0.[0:{MAX_NODES}]"
  71. if args.pop("increase_file_limit"):
  72. increase_file_limit()
  73. compression_type = args.pop("compression")
  74. compression = getattr(CompressionType, compression_type)
  75. server = Server.create(**args, optim_cls=optim_cls, start=True, compression=compression)
  76. try:
  77. server.join()
  78. except KeyboardInterrupt:
  79. logger.info("Caught KeyboardInterrupt, shutting down")
  80. finally:
  81. server.shutdown()
  82. if __name__ == "__main__":
  83. main()