test_full_model.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
  1. import pytest
  2. import torch
  3. import transformers
  4. import peft
  5. from hivemind import get_logger
  6. from transformers.generation import BeamSearchScorer
  7. from transformers.models.bloom import BloomForCausalLM
  8. from petals import DistributedBloomForCausalLM
  9. from test_utils import *
  10. logger = get_logger(__name__)
  11. @pytest.mark.forked
  12. @pytest.mark.parametrize("use_peft", (True, False) if ADAPTER_NAME else (False,))
  13. @pytest.mark.parametrize("pass_empty_tensors", (True, False))
  14. def test_full_model_exact_match(use_peft: bool, pass_empty_tensors: bool, atol_forward=1e-3, atol_inference=1e-3):
  15. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  16. model = DistributedBloomForCausalLM.from_pretrained(
  17. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  18. )
  19. if use_peft:
  20. model.transformer.h.sequence_manager.extra_metadata = dict(active_adapter=ADAPTER_NAME)
  21. config = model.config
  22. assert isinstance(model, DistributedBloomForCausalLM)
  23. assert len(model.transformer.h) == model.config.num_hidden_layers
  24. test_inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  25. with torch.inference_mode():
  26. parallel_outputs = model.forward(test_inputs).logits
  27. assert torch.all(torch.isfinite(parallel_outputs))
  28. logger.info("Forward outputs are finite")
  29. embs = model.transformer.word_embeddings(test_inputs)
  30. embs = model.transformer.word_embeddings_layernorm(embs)
  31. recurrent_outputs = []
  32. with model.transformer.h.inference_session(max_length=embs.shape[1]) as sess:
  33. if pass_empty_tensors:
  34. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  35. for t in range(embs.shape[1]):
  36. recurrent_outputs.append(sess.step(embs[:, t : t + 1, :]))
  37. if t == int(embs.shape[1] // 2) and pass_empty_tensors:
  38. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  39. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  40. recurrent_outputs = torch.cat(recurrent_outputs, dim=1)
  41. recurrent_outputs = model.transformer.ln_f(recurrent_outputs)
  42. recurrent_outputs = model.lm_head(recurrent_outputs)
  43. assert torch.allclose(recurrent_outputs, parallel_outputs, rtol=0, atol=atol_inference)
  44. logger.info("Inference is consistent with forward")
  45. del model, embs, recurrent_outputs
  46. if REF_NAME:
  47. ref_model = transformers.BloomForCausalLM.from_pretrained(
  48. REF_NAME, low_cpu_mem_usage=True, torch_dtype=torch.float32
  49. )
  50. if use_peft:
  51. ref_model = peft.PeftModel.from_pretrained(ref_model, ADAPTER_NAME)
  52. if config.vocab_size < ref_model.config.vocab_size:
  53. ref_model.resize_token_embeddings(config.vocab_size)
  54. logger.warning(f"Resized the reference model embeddings, new total = {ref_model.config.vocab_size}")
  55. dummy_mask = torch.ones_like(test_inputs, dtype=torch.bool)
  56. # note: this creates a dummy mask to make the test compatible with older transformer versions
  57. # prior to https://github.com/huggingface/transformers/pull/17837
  58. ref_outputs = ref_model.forward(test_inputs, attention_mask=dummy_mask).logits.float()
  59. assert torch.allclose(ref_outputs, parallel_outputs, rtol=0, atol=atol_forward)
  60. logger.warning(f"Distributed forward is consistent with {type(ref_model)}.forward")
  61. del ref_model, ref_outputs, dummy_mask
  62. else:
  63. logger.warning("Did not test exact match with local model: REF_NAME environment variable is not set")
  64. assert False
  65. @pytest.mark.forked
  66. def test_greedy_generation(max_new_tokens=4):
  67. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  68. model = DistributedBloomForCausalLM.from_pretrained(
  69. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  70. )
  71. inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  72. remote_outputs = model.generate(
  73. inputs,
  74. max_new_tokens=max_new_tokens,
  75. )
  76. hf_outputs = BloomForCausalLM.greedy_search(model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens)
  77. assert torch.allclose(remote_outputs, hf_outputs), "Greedy search results are not identical to HF"
  78. inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[
  79. "input_ids"
  80. ]
  81. remote_outputs_batch = model.generate(
  82. inputs_batch,
  83. max_new_tokens=max_new_tokens,
  84. )
  85. hf_outputs_batch = BloomForCausalLM.greedy_search(
  86. model, input_ids=inputs_batch, max_length=inputs_batch.size(1) + max_new_tokens
  87. )
  88. assert torch.allclose(
  89. remote_outputs_batch, hf_outputs_batch
  90. ), "Greedy search results are not identical to HF in multibatch mode"
  91. @pytest.mark.forked
  92. @pytest.mark.parametrize("sampling_options", [dict(), dict(temperature=100.0), dict(top_k=5), dict(top_p=0.9)])
  93. @pytest.mark.skip("Sampling is currently not consistent with outputs from Transformers")
  94. def test_sampling(sampling_options, max_new_tokens=4):
  95. torch.manual_seed(0)
  96. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  97. model = DistributedBloomForCausalLM.from_pretrained(
  98. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  99. )
  100. logits_warper = BloomForCausalLM._get_logits_warper(model, num_beams=1, **sampling_options)
  101. inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  102. with torch.random.fork_rng():
  103. remote_outputs = model.generate(
  104. inputs,
  105. max_new_tokens=max_new_tokens,
  106. do_sample=True,
  107. **sampling_options,
  108. )
  109. with torch.random.fork_rng():
  110. hf_outputs = BloomForCausalLM.sample(
  111. model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens, logits_warper=logits_warper
  112. )
  113. assert torch.allclose(remote_outputs, hf_outputs), "Sampling results are not identical to HF"
  114. inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[
  115. "input_ids"
  116. ]
  117. with torch.random.fork_rng():
  118. remote_outputs_batch = model.generate(
  119. inputs_batch,
  120. max_new_tokens=max_new_tokens,
  121. do_sample=True,
  122. **sampling_options,
  123. )
  124. with torch.random.fork_rng():
  125. hf_outputs_batch = BloomForCausalLM.sample(
  126. model,
  127. input_ids=inputs_batch,
  128. max_length=inputs_batch.size(1) + max_new_tokens,
  129. logits_warper=logits_warper,
  130. )
  131. assert torch.allclose(
  132. remote_outputs_batch, hf_outputs_batch
  133. ), "Sampling results are not identical to HF in multibatch mode"
  134. @pytest.mark.forked
  135. def test_beam_search_generation(max_new_tokens=4, num_beams=2):
  136. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  137. model = DistributedBloomForCausalLM.from_pretrained(
  138. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  139. )
  140. text = "A cat sat on a mat"
  141. inputs = tokenizer(text, return_tensors="pt")["input_ids"]
  142. remote_outputs = model.generate(
  143. inputs,
  144. max_new_tokens=max_new_tokens,
  145. num_beams=num_beams,
  146. )
  147. beam_scorer = BeamSearchScorer(
  148. batch_size=inputs.size(0),
  149. num_beams=num_beams,
  150. device=inputs.device,
  151. length_penalty=0,
  152. do_early_stopping=False,
  153. )
  154. hf_inputs = tokenizer([text] * 2, return_tensors="pt")["input_ids"]
  155. hf_outputs = BloomForCausalLM.beam_search(
  156. model, input_ids=hf_inputs, max_length=inputs.size(1) + max_new_tokens, beam_scorer=beam_scorer
  157. )
  158. assert torch.allclose(remote_outputs, hf_outputs), "Beam search results are not identical to HF"