test_full_model.py 2.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. import pytest
  2. import torch
  3. import transformers
  4. from hivemind import get_logger, use_hivemind_log_handler
  5. from test_utils import *
  6. from src.client.remote_model import DistributedBloomForCausalLM
  7. use_hivemind_log_handler("in_root_logger")
  8. logger = get_logger(__file__)
  9. @pytest.mark.forked
  10. def test_full_model_exact_match(atol_forward=1e-3, atol_inference=1e-3):
  11. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  12. model = DistributedBloomForCausalLM.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS,
  13. low_cpu_mem_usage=True, torch_dtype=torch.float32)
  14. assert isinstance(model, DistributedBloomForCausalLM)
  15. assert len(model.transformer.h) == model.config.n_layer
  16. test_inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  17. with torch.inference_mode():
  18. parallel_outputs = model.forward(test_inputs).logits
  19. assert torch.all(torch.isfinite(parallel_outputs))
  20. logger.info("Forward outputs are finite")
  21. embs = model.transformer.word_embeddings(test_inputs)
  22. embs = model.transformer.word_embeddings_layernorm(embs)
  23. recurrent_outputs = []
  24. with model.transformer.h.inference_session() as sess:
  25. for t in range(embs.shape[1]):
  26. recurrent_outputs.append(sess.step(embs[:, t : t + 1, :]))
  27. recurrent_outputs = torch.cat(recurrent_outputs, dim=1)
  28. recurrent_outputs = model.transformer.ln_f(recurrent_outputs)
  29. recurrent_outputs = model.lm_head(recurrent_outputs)
  30. assert torch.allclose(recurrent_outputs, parallel_outputs, rtol=0, atol=atol_inference)
  31. logger.info("Inference is consistent with forward")
  32. del model, embs, recurrent_outputs
  33. if REF_NAME:
  34. ref_model = transformers.BloomForCausalLM.from_pretrained(
  35. REF_NAME, low_cpu_mem_usage=True, torch_dtype=torch.float32)
  36. dummy_mask = torch.ones_like(test_inputs, dtype=torch.bool)
  37. # note: this creates a dummy mask to make the test compatible with older transformer versions
  38. # prior to https://github.com/huggingface/transformers/pull/17837
  39. ref_outputs = ref_model.forward(test_inputs, attention_mask=dummy_mask).logits.float()
  40. assert torch.allclose(ref_outputs, parallel_outputs, rtol=0, atol=atol_forward)
  41. logger.warning(f"Distributed forward is consistent with {type(ref_model)}.forward")
  42. del ref_model, ref_outputs, dummy_mask
  43. else:
  44. logger.warning("Did not test exact match with local model: REF_NAME environment variable is not set")
  45. assert False