123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- from __future__ import annotations
- import multiprocessing as mp
- import threading
- from typing import Dict, Optional, Sequence, Union
- import torch
- from hivemind import DHT, MAX_DHT_TIME_DISCREPANCY_SECONDS, BatchTensorDescriptor, get_dht_time
- from hivemind.moe.server.dht_handler import DHTHandlerThread
- from hivemind.moe.server.layers import add_custom_models_from_file
- from hivemind.moe.server.runtime import Runtime
- from hivemind.proto.runtime_pb2 import CompressionType
- from hivemind.utils.logging import get_logger, use_hivemind_log_handler
- from src import declare_active_modules
- from src.bloom.from_pretrained import DTYPE_MAP, DistributedBloomConfig, load_pretrained_block
- from src.server.backend import TransformerBackend
- from src.server.cache import MemoryCache
- from src.server.handler import TransformerConnectionHandler
- use_hivemind_log_handler("in_root_logger")
- logger = get_logger(__file__)
- class Server(threading.Thread):
- """Serves one or more bloom layers for inference, forward and backward; announces oneself to the DHT"""
- def __init__(
- self,
- dht: DHT,
- module_backends: Dict[str, TransformerBackend],
- *,
- device: torch.device,
- num_connection_handlers: int = 8,
- update_period: float = 30,
- expiration: Optional[float] = None,
- start: bool,
- **kwargs,
- ):
- threading.Thread.__init__(self)
- self.dht, self.module_backends, self.update_period = dht, module_backends, update_period
- self.conn_handlers = [
- TransformerConnectionHandler(dht, self.module_backends) for _ in range(num_connection_handlers)
- ]
- self.runtime = Runtime(self.module_backends, device=device, **kwargs)
- self.dht_handler_thread = ModuleAnnouncerThread(
- self.module_backends, dht, update_period, expiration, daemon=True
- )
- self.checkpoint_saver = None # no need to save checkpoints since we do not change model state
- if start:
- self.run_in_background(await_ready=True)
- def run(self):
- """
- Starts Server in the current thread. Initializes dht if necessary, starts connection handlers,
- runs Runtime (self.runtime) to process incoming requests.
- """
- logger.info(f"Serving {len(self.module_backends)} blocks:")
- for expert_name, backend in self.module_backends.items():
- num_parameters = sum(p.numel() for p in backend.module.parameters() if p.requires_grad)
- logger.info(f"{expert_name}: {backend.module.__class__.__name__}, {num_parameters} parameters")
- if not self.dht.is_alive():
- self.dht.run_in_background(await_ready=True)
- if self.module_backends:
- self.dht_handler_thread.start()
- if self.checkpoint_saver is not None:
- self.checkpoint_saver.start()
- for process in self.conn_handlers:
- if not process.is_alive():
- process.start()
- process.ready.result()
- try:
- self.runtime.run()
- finally:
- self.shutdown()
- # noinspection PyMethodOverriding
- @classmethod
- def create(
- cls,
- prefix: str,
- converted_model_name_or_path: str,
- num_blocks: Optional[int] = None,
- block_indices: Optional[str] = None,
- num_handlers: Optional[int] = None,
- min_batch_size: int = 1,
- max_batch_size: int = 4096,
- torch_dtype: str = "auto",
- cache_size_bytes: Optional[int] = None,
- device: Union[str, torch.device] = None,
- initial_peers: Sequence[str] = (),
- compression=CompressionType.NONE,
- stats_report_interval: Optional[int] = None,
- custom_module_path=None,
- update_period: float = 30,
- expiration: Optional[float] = None,
- use_auth_token: Optional[str] = None,
- *,
- start: bool,
- **kwargs,
- ) -> Server:
- """Create a server with one or more bloom blocks. See run_server.py for documentation."""
- if custom_module_path is not None:
- add_custom_models_from_file(custom_module_path)
- assert (block_indices is None) != (num_blocks is None), "please specify num_blocks or block_indices, not both"
- dht = DHT(initial_peers=initial_peers, start=True, **kwargs)
- visible_maddrs_str = [str(a) for a in dht.get_visible_maddrs()]
- logger.info(f"Running DHT node on {visible_maddrs_str}, initial peers = {initial_peers}")
- device = device or ("cuda" if torch.cuda.is_available() else "cpu")
- memory_cache = MemoryCache(device, cache_size_bytes)
- if isinstance(torch_dtype, str):
- torch_dtype = DTYPE_MAP[torch_dtype]
- assert torch_dtype in DTYPE_MAP.values(), f"torch_dtype must be one of {list(DTYPE_MAP.values())}"
- if block_indices is not None:
- try:
- start, end = block_indices.split(":")
- start, end = map(int, map(str.strip, (start, end)))
- except Exception as e:
- logger.error(f"Failed to parse --block_indices ({e}), must be start:end (e.g. 0:33)")
- raise
- block_indices = range(start, end)
- else:
- assert num_blocks is not None
- block_indices = range(num_blocks) # TODO replace with proper load balancing
- block_config = DistributedBloomConfig.from_pretrained(converted_model_name_or_path, use_auth_token=True)
- # initialize modules
- blocks = {}
- for block_index in block_indices:
- module_uid = f"{prefix}.{block_index}"
- block = load_pretrained_block(
- converted_model_name_or_path,
- block_index,
- block_config,
- torch_dtype=torch_dtype,
- use_auth_token=use_auth_token
- )
- for param in block.parameters():
- param.requires_grad = False
- blocks[module_uid] = TransformerBackend(
- module_uid,
- block,
- memory_cache=memory_cache,
- args_schema=(BatchTensorDescriptor(1, 2048, block_config.hidden_size, compression=compression),),
- kwargs_schema={},
- outputs_schema=(BatchTensorDescriptor(1, 2048, block_config.hidden_size, compression=compression),),
- min_batch_size=min_batch_size,
- max_batch_size=max_batch_size,
- )
- num_handlers = num_handlers if num_handlers is not None else len(blocks) * 4
- return cls(
- dht,
- blocks,
- num_connection_handlers=num_handlers,
- device=device,
- stats_report_interval=stats_report_interval,
- update_period=update_period,
- expiration=expiration,
- start=start,
- )
- def run_in_background(self, await_ready=True, timeout=None):
- """
- Starts Server in a background thread. if await_ready, this method will wait until background server
- is ready to process incoming requests or for :timeout: seconds max.
- """
- self.start()
- if await_ready and not self.ready.wait(timeout=timeout):
- raise TimeoutError("Server didn't notify .ready in {timeout} seconds")
- @property
- def ready(self) -> mp.synchronize.Event:
- """
- An event (multiprocessing.Event) that is set when the server is ready to process requests.
- Example
- =======
- >>> server.start()
- >>> server.ready.wait(timeout=10)
- >>> print("Server ready" if server.ready.is_set() else "Server didn't start in 10 seconds")
- """
- return self.runtime.ready # mp.Event that is true if self is ready to process batches
- def shutdown(self):
- """
- Gracefully terminate the server, process-safe.
- Please note that terminating server otherwise (e.g. by killing processes) may result in zombie processes.
- If you did already cause a zombie outbreak, your only option is to kill them with -9 (SIGKILL).
- """
- self.ready.clear()
- for process in self.conn_handlers:
- process.terminate()
- process.join()
- logger.debug("Connection handlers terminated")
- if self.module_backends:
- self.dht_handler_thread.stop.set()
- self.dht_handler_thread.join()
- if self.checkpoint_saver is not None:
- self.checkpoint_saver.stop.set()
- self.checkpoint_saver.join()
- self.dht.shutdown()
- self.dht.join()
- logger.debug(f"Shutting down runtime")
- self.runtime.shutdown()
- logger.info("Server shutdown succesfully")
- class ModuleAnnouncerThread(threading.Thread):
- """Periodically announces that this server hosts the specified modules, visible to all DHT peers"""
- def __init__(
- self, module_backends, dht: DHT, update_period: float = 30, expiration: Optional[int] = None, **kwargs
- ):
- super().__init__(**kwargs)
- if expiration is None:
- expiration = max(2 * update_period, MAX_DHT_TIME_DISCREPANCY_SECONDS)
- self.module_backends = module_backends
- self.dht = dht
- self.update_period = update_period
- self.expiration = expiration
- self.stop = threading.Event()
- def run(self) -> None:
- declare_active_modules(self.dht, self.module_backends.keys(), get_dht_time() + self.expiration)
- while not self.stop.wait(self.update_period):
- declare_active_modules(self.dht, self.module_backends.keys(), get_dht_time() + self.expiration)
|