123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- from typing import Optional, Tuple
- import pytest
- import torch
- from transformers.models.falcon.modeling_falcon import FalconDecoderLayer, FalconModel, build_alibi_tensor
- from petals.utils.auto_config import AutoDistributedConfig
- from petals.utils.convert_block import QuantType, convert_block
- from test_utils import MODEL_NAME
- KVCache = Tuple[torch.Tensor, torch.Tensor]
- class UnoptimizedWrappedFalconBlock(FalconDecoderLayer):
- def forward(
- self,
- hidden_states: torch.Tensor,
- *args,
- attention_mask: Optional[torch.Tensor] = None,
- alibi: Optional[torch.Tensor] = None,
- layer_past: Optional[KVCache] = None,
- use_cache: bool = False,
- **kwargs,
- ):
- batch_size, seq_length = hidden_states.shape[:2]
- if layer_past is not None:
- layer_past = self._reorder_cache_from_bloom_to_falcon(layer_past)
- past_length = 0 if layer_past is None else layer_past[0].shape[1]
- seq_length_with_past = seq_length + past_length
- attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
- if alibi is None and self.config.alibi:
- alibi = build_alibi_tensor(attention_mask, num_heads=self.num_heads, dtype=hidden_states.dtype)
- attention_mask = FalconModel._prepare_attn_mask(attention_mask, (batch_size, seq_length), past_length)
- outputs = super().forward(
- hidden_states,
- *args,
- attention_mask=attention_mask,
- alibi=alibi,
- layer_past=layer_past,
- use_cache=use_cache,
- **kwargs,
- )
- if use_cache:
- present_key_value = outputs[-1]
- present_key_value = self._reorder_cache_from_falcon_to_bloom(present_key_value)
- outputs = outputs[:-1] + (present_key_value,)
- return outputs
- def _reorder_cache_from_bloom_to_falcon(self, key_value: KVCache) -> KVCache:
- key_states, value_states = key_value
- key_states = key_states.permute(0, 2, 1)
- assert key_states.shape == value_states.shape # Both are [batch_size * num_kv_heads, seq_len, head_dim]
- if self.config.new_decoder_architecture:
- key_states = self._expand_states(key_states)
- value_states = self._expand_states(value_states)
- return (key_states, value_states)
- def _reorder_cache_from_falcon_to_bloom(self, key_value: KVCache) -> KVCache:
- key_states, value_states = key_value
- if self.config.new_decoder_architecture:
- key_states = self._collapse_states(key_states)
- value_states = self._collapse_states(value_states)
- assert key_states.shape == value_states.shape # Both are [batch_size * num_kv_heads, seq_len, head_dim]
- key_states = key_states.permute(0, 2, 1)
- return (key_states, value_states)
- def _expand_states(self, state: torch.Tensor) -> torch.Tensor:
- batch_size_x_num_kv_heads, seq_len, head_dim = state.shape
- batch_size = batch_size_x_num_kv_heads // self.config.num_kv_heads
- state = state.view(batch_size, self.config.num_kv_heads, 1, seq_len, head_dim)
- state = state.expand(-1, -1, self.config.num_key_value_groups, -1, -1) # No copy
- state = state.reshape(batch_size * self.config.num_attention_heads, seq_len, head_dim) # Involves a copy
- return state
- def _collapse_states(self, state: torch.Tensor) -> torch.Tensor:
- batch_size_x_num_attn_heads, seq_len, head_dim = state.shape
- batch_size = batch_size_x_num_attn_heads // self.config.num_attention_heads
- state = state.view(batch_size, self.config.num_kv_heads, self.config.num_key_value_groups, seq_len, head_dim)
- state = state[:, :, 0]
- state = state.view(batch_size * self.config.num_kv_heads, seq_len, head_dim)
- return state
- @pytest.mark.skipif("falcon" not in MODEL_NAME, reason="This test is applicable only to Falcon models")
- @pytest.mark.parametrize("device", ["cpu", "cuda:0"])
- @pytest.mark.forked
- def test_falcon(device):
- if device == "cuda:0" and not torch.cuda.is_available():
- pytest.skip("CUDA tests can be run only in CUDA-enabled setups")
- config = AutoDistributedConfig.from_pretrained(MODEL_NAME)
- tensor_parallel_devices = (device,)
- dtype = torch.bfloat16
- quant_type = QuantType.NONE
- block = config.block_class(config).to(dtype)
- block = convert_block(block, 0, config, tensor_parallel_devices, device, quant_type=quant_type, freeze=True)
- unopt_block = UnoptimizedWrappedFalconBlock(config).to(dtype)
- unopt_block = convert_block(
- unopt_block, 0, config, tensor_parallel_devices, device, quant_type=quant_type, freeze=True
- )
- unopt_block.load_state_dict(block.state_dict())
- cache = unopt_cache = None
- with torch.inference_mode():
- for length in [10, 1, 1, 1]:
- dummy_input = torch.randn(1, length, config.hidden_size, device=device, dtype=dtype)
- block_output, cache = block(dummy_input, layer_past=cache, use_cache=True)
- unopt_block_output, unopt_cache = unopt_block(dummy_input, layer_past=unopt_cache, use_cache=True)
- assert torch.allclose(block_output, unopt_block_output, atol=1e-6, rtol=0), length
- assert torch.allclose(cache[0], unopt_cache[0], atol=1e-6, rtol=0), length
- assert torch.allclose(cache[1], unopt_cache[1], atol=1e-6, rtol=0), length
|