123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- from __future__ import annotations
- from typing import Optional, Union
- import torch
- from hivemind import DHT, P2P, get_logger, use_hivemind_log_handler
- from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
- from torch import nn
- import src
- from src.client.inference_session import InferenceSession
- from src.client.sequence_manager import RemoteSequenceManager
- from src.client.sequential_autograd import _RemoteSequentialAutogradFunction
- from src.data_structures import UID_DELIMITER
- from src.utils.misc import DUMMY
- use_hivemind_log_handler("in_root_logger")
- logger = get_logger(__file__)
- class RemoteSequential(nn.Module):
- """
- A sequence of transformer blocks hosted by the swarm.
- """
- def __init__(
- self,
- config: src.DistributedBloomConfig,
- dht: DHT,
- dht_prefix: Optional[str] = None,
- p2p: Optional[P2P] = None,
- sequence_manager: Optional[RemoteSequenceManager] = None,
- ):
- super().__init__()
- self.config = config
- self.dht = dht
- self.dht_prefix = dht_prefix or config.dht_prefix
- self.p2p = RemoteExpertWorker.run_coroutine(dht.replicate_p2p()) if p2p is None else p2p
- num_blocks = self.config.n_layer if sequence_manager is None else len(sequence_manager)
- block_uids = [f"{config.dht_prefix}{UID_DELIMITER}{i}" for i in range(num_blocks)]
- if sequence_manager is None:
- logger.debug(f"Creating new sequence manager for block uids: {block_uids}")
- self.sequence_manager = RemoteSequenceManager(dht, block_uids, self.p2p)
- self.is_subsequence = False
- else:
- logger.debug(f"Reusing sequence manager with {len(sequence_manager)} modules")
- self.sequence_manager = sequence_manager
- assert isinstance(sequence_manager.block_uids, list)
- self.is_subsequence = self.sequence_manager.block_uids != block_uids
- def forward(self, inputs: torch.Tensor, prompts: torch.Tensor = DUMMY):
- outputs = _RemoteSequentialAutogradFunction.apply(inputs, prompts, self.sequence_manager)
- return outputs
- def __getitem__(self, ix: Union[int, slice]) -> RemoteSequential:
- assert isinstance(ix, (int, slice))
- if isinstance(ix, int):
- return RemoteTransformerBlock(
- self.config,
- self.dht,
- dht_prefix=self.dht_prefix,
- p2p=self.p2p,
- sequence_manager=self.sequence_manager[ix],
- )
- else:
- return RemoteSequential(
- self.config,
- self.dht,
- dht_prefix=self.dht_prefix,
- p2p=self.p2p,
- sequence_manager=self.sequence_manager[ix],
- )
- def __iter__(self):
- for block_index in range(len(self)):
- yield self[block_index]
- def __len__(self):
- return len(self.sequence_manager)
- def inference_session(self, **kwargs) -> InferenceSession:
- self.sequence_manager.update_()
- return InferenceSession(self.sequence_manager, self.p2p, **kwargs)
- def extra_repr(self) -> str:
- return f"modules={self.sequence_manager.block_uids[0]}..{self.sequence_manager.block_uids[-1]}"
- class RemoteTransformerBlock(RemoteSequential):
- """Single transformer block hosted by swarm
- This class is deprecated and kept for backward compatibility.
- It will be removed soon in favor of using ``RemoteSequential`` directly.
- """
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- assert len(self) == 1, "Remote Block is a sequence size 1"
- def extra_repr(self):
- return f"{self.sequence_manager.block_uids[0]}"
|