test_full_model.py 3.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495
  1. import pytest
  2. import torch
  3. import transformers
  4. from hivemind import get_logger, use_hivemind_log_handler
  5. from test_utils import *
  6. from src.bloom.model import BloomForCausalLM
  7. from src.client.remote_model import DistributedBloomForCausalLM
  8. use_hivemind_log_handler("in_root_logger")
  9. logger = get_logger(__file__)
  10. @pytest.fixture
  11. def tokenizer():
  12. return transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  13. @pytest.fixture
  14. def model():
  15. return DistributedBloomForCausalLM.from_pretrained(
  16. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  17. )
  18. @pytest.mark.forked
  19. def test_full_model_exact_match(tokenizer, model, atol_forward=1e-3, atol_inference=1e-3):
  20. assert isinstance(model, DistributedBloomForCausalLM)
  21. assert len(model.transformer.h) == model.config.n_layer
  22. test_inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  23. with torch.inference_mode():
  24. parallel_outputs = model.forward(test_inputs).logits
  25. assert torch.all(torch.isfinite(parallel_outputs))
  26. logger.info("Forward outputs are finite")
  27. embs = model.transformer.word_embeddings(test_inputs)
  28. embs = model.transformer.word_embeddings_layernorm(embs)
  29. recurrent_outputs = []
  30. with model.transformer.h.inference_session() as sess:
  31. for t in range(embs.shape[1]):
  32. recurrent_outputs.append(sess.step(embs[:, t : t + 1, :]))
  33. recurrent_outputs = torch.cat(recurrent_outputs, dim=1)
  34. recurrent_outputs = model.transformer.ln_f(recurrent_outputs)
  35. recurrent_outputs = model.lm_head(recurrent_outputs)
  36. assert torch.allclose(recurrent_outputs, parallel_outputs, rtol=0, atol=atol_inference)
  37. logger.info("Inference is consistent with forward")
  38. del model, embs, recurrent_outputs
  39. if REF_NAME:
  40. ref_model = transformers.BloomForCausalLM.from_pretrained(
  41. REF_NAME, low_cpu_mem_usage=True, torch_dtype=torch.float32
  42. )
  43. dummy_mask = torch.ones_like(test_inputs, dtype=torch.bool)
  44. # note: this creates a dummy mask to make the test compatible with older transformer versions
  45. # prior to https://github.com/huggingface/transformers/pull/17837
  46. ref_outputs = ref_model.forward(test_inputs, attention_mask=dummy_mask).logits.float()
  47. assert torch.allclose(ref_outputs, parallel_outputs, rtol=0, atol=atol_forward)
  48. logger.warning(f"Distributed forward is consistent with {type(ref_model)}.forward")
  49. del ref_model, ref_outputs, dummy_mask
  50. else:
  51. logger.warning("Did not test exact match with local model: REF_NAME environment variable is not set")
  52. assert False
  53. def test_greedy_generation(tokenizer, model, max_new_tokens=4):
  54. inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  55. remote_outputs = model.generate(
  56. inputs,
  57. max_new_tokens=max_new_tokens,
  58. )
  59. hf_outputs = BloomForCausalLM.greedy_search(
  60. model,
  61. input_ids=inputs,
  62. max_length=inputs.size(1) + max_new_tokens
  63. )
  64. assert torch.allclose(remote_outputs, hf_outputs), "Greedy search are not identical to HF"
  65. inputs_batch = tokenizer(
  66. ["A cat sat on a mat", "A dog sat on a mat"],
  67. return_tensors='pt',
  68. padding=True
  69. )["input_ids"]
  70. remote_outputs_batch = model.generate(
  71. inputs_batch,
  72. max_new_tokens=max_new_tokens,
  73. )
  74. hf_outputs_batch = BloomForCausalLM.greedy_search(
  75. model,
  76. input_ids=inputs_batch,
  77. max_length=inputs_batch.size(1) + max_new_tokens
  78. )
  79. assert torch.allclose(remote_outputs_batch, hf_outputs_batch), "Greedy search are not identical to HF in multibatch mode"