convert_model.py 4.0 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. import argparse
  2. import os
  3. import psutil
  4. import torch.backends.quantized
  5. import torch.nn as nn
  6. import transformers
  7. from hivemind.utils.logging import get_logger, use_hivemind_log_handler
  8. from huggingface_hub import Repository
  9. from tqdm.auto import tqdm
  10. from src import BloomModel
  11. from src.client.remote_model import DistributedBloomConfig
  12. use_hivemind_log_handler("in_root_logger")
  13. logger = get_logger(__file__)
  14. DTYPE_MAP = dict(bfloat16=torch.bfloat16, float16=torch.float16, float32=torch.float32, auto="auto")
  15. if __name__ == "__main__":
  16. parser = argparse.ArgumentParser(description="Load bloom layers and convert to 8-bit using torch quantization.")
  17. parser.add_argument("--model", type=str, default="bigscience/bloom-6b3", help="Model name for from_pretrained")
  18. parser.add_argument("--revision", type=str, default=None, help="Optional commit id from HF hub")
  19. parser.add_argument("--torch_dtype", type=str, default="auto", help="Load initial model in this dtype")
  20. parser.add_argument("--output_path", type=str, default="./converted_model", help="Track output repo to this folder")
  21. parser.add_argument("--output_repo", type=str, default="bigscience/test-bloomd", help="Push to this HF hub repo")
  22. parser.add_argument("--client_branch", type=str, default="client", help="Save client version to this branch")
  23. parser.add_argument(
  24. "--block_branch_prefix", type=str, default="block_", help="Save blocks to branches with this prefix"
  25. )
  26. parser.add_argument(
  27. "--commit_message", type=str, default="push-o-matic", help="Use this commit message for all parts"
  28. )
  29. parser.add_argument("--use_auth_token", type=str, default=None, help="auth token for from_pretrained")
  30. args = parser.parse_args()
  31. free_ram_gb = psutil.virtual_memory().available / 2**30
  32. if args.model == "bigscience/bloom" and free_ram_gb < 400:
  33. logger.warning(f"ACHTUNG! converting bloom-176b will use up 350-400GB RAM, you have {free_ram_gb:.3f} free")
  34. assert args.torch_dtype in DTYPE_MAP, f"torch_dtype must be one of {list(DTYPE_MAP.keys())}"
  35. if os.path.exists(args.output_path) and (
  36. len(os.listdir(args.output_path)) != 0 or not os.path.isdir(args.output_path)
  37. ):
  38. raise FileExistsError(f"Output path {args.output_path} already exists and is not an empty directory")
  39. logger.info(f"Loading source model {args.model} (this may take a few minutes)")
  40. config = DistributedBloomConfig.from_pretrained(
  41. args.model, use_auth_token=args.use_auth_token, revision=args.revision
  42. )
  43. config.dht_prefix = args.model
  44. model = BloomModel.from_pretrained(
  45. args.model, use_auth_token=args.use_auth_token, revision=args.revision, torch_dtype=DTYPE_MAP[args.torch_dtype]
  46. )
  47. tokenizer = transformers.AutoTokenizer.from_pretrained(
  48. args.model, use_auth_token=args.use_auth_token, revision=args.revision
  49. )
  50. os.makedirs(args.output_path, exist_ok=True)
  51. repo = Repository(args.output_path, clone_from=args.output_repo, use_auth_token=args.use_auth_token)
  52. repo.git_pull()
  53. transformer_blocks = model.h
  54. logger.info(
  55. f"Saving transformer blocks to {args.output_repo}@{args.block_branch_prefix}0"
  56. f" - {args.output_repo}@{args.block_branch_prefix}{len(transformer_blocks)}"
  57. )
  58. for i, block in enumerate(tqdm(transformer_blocks)):
  59. with repo.commit(
  60. commit_message=args.commit_message, branch=args.block_branch_prefix + str(i), track_large_files=True
  61. ):
  62. torch.save(block.state_dict(), "./pytorch_model.bin")
  63. logger.info(f"Saving client-side modules to {args.output_repo}@{args.client_branch}")
  64. repo.git_checkout(args.client_branch, create_branch_ok=True)
  65. with repo.commit(commit_message=args.commit_message, branch=args.client_branch, track_large_files=True):
  66. model.h = nn.ModuleList()
  67. model.save_pretrained(".")
  68. tokenizer.save_pretrained(".")
  69. config.save_pretrained(".")
  70. logger.info(f"Converted {args.model} and pushed to {args.output_repo}")