test_block_exact_match.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. import random
  2. from typing import Union
  3. import hivemind
  4. import pytest
  5. import torch
  6. from transformers.models.bloom.configuration_bloom import BloomConfig
  7. from petals.bloom.block import WrappedBloomBlock
  8. from petals.bloom.from_pretrained import DTYPE_MAP, _load_state_dict, load_pretrained_block
  9. from petals.client import DistributedBloomConfig
  10. from petals.client.remote_sequential import RemoteTransformerBlock
  11. from petals.data_structures import UID_DELIMITER
  12. from petals.dht_utils import get_remote_module
  13. from test_utils import *
  14. @pytest.mark.forked
  15. def test_remote_block_exact_match(atol_forward=1e-4, atol_inference=1e-3):
  16. dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
  17. config = DistributedBloomConfig.from_pretrained(MODEL_NAME)
  18. for block_index in random.sample(range(config.n_layer), 3):
  19. remote_block = get_remote_module(dht, f"{MODEL_NAME}{UID_DELIMITER}{block_index}", config)
  20. assert isinstance(remote_block, RemoteTransformerBlock)
  21. inputs = torch.randn(1, 8, config.hidden_size)
  22. outputs_forward = remote_block(inputs)
  23. outputs_inference = []
  24. with remote_block.inference_session(max_length=inputs.shape[1]) as sess:
  25. for i in range(inputs.shape[1]):
  26. outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
  27. # test that max length is respected
  28. with pytest.raises(ValueError, match=r"Maximum length exceeded") as exc_info:
  29. sess.step(inputs[:, -1:, :])
  30. assert "Maximum length exceeded" in repr(exc_info.value)
  31. outputs_inference = torch.cat(outputs_inference, dim=1)
  32. ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32)
  33. (outputs_local,) = ref_block(inputs)
  34. assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward)
  35. assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)
  36. def _old_load_pretrained_block(
  37. converted_model_name_or_path: str,
  38. block_index: int,
  39. torch_dtype: Union[torch.dtype, str] = "auto",
  40. ) -> WrappedBloomBlock:
  41. """Load the BLOOM block by directly initializing the weights.
  42. This test is used to check consistency with the previous implementation and can be removed in the future."""
  43. config = BloomConfig.from_pretrained(converted_model_name_or_path)
  44. block = WrappedBloomBlock(config)
  45. state_dict = _load_state_dict(
  46. converted_model_name_or_path,
  47. block_index,
  48. config,
  49. cache_dir=None,
  50. )
  51. if torch_dtype == "auto":
  52. with torch.no_grad():
  53. for name, param in block.named_parameters():
  54. assert name in state_dict, f"{name} not in state dict"
  55. param.data = param.data.to(state_dict[name].dtype)
  56. else:
  57. assert torch_dtype in DTYPE_MAP.values(), f"torch_dtype must be one of {list(DTYPE_MAP.values())}"
  58. block = block.to(dtype=torch_dtype)
  59. block.load_state_dict(state_dict, strict=True)
  60. return block
  61. @pytest.mark.forked
  62. def test_init_pretrained_block(torch_dtype=torch.float32, atol_forward=1e-8):
  63. config = DistributedBloomConfig.from_pretrained(MODEL_NAME)
  64. torch.random.manual_seed(0)
  65. inputs = torch.randn(1, 16, config.hidden_size, dtype=torch_dtype)
  66. block = load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch_dtype)
  67. ref_block = _old_load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch_dtype)
  68. outputs = block.forward(inputs)[0]
  69. outputs_ref = ref_block.forward(inputs)[0]
  70. assert torch.allclose(outputs, outputs_ref, rtol=0, atol=atol_forward)