sequential_autograd.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. """
  2. A PyTorch autograd function that runs forward/backward on a sequence of remote servers in a fault-tolerant manner
  3. """
  4. import asyncio
  5. import itertools
  6. import logging
  7. from collections import deque
  8. from typing import List, Optional, Sequence, Tuple
  9. import torch
  10. from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
  11. from hivemind.utils.logging import get_logger
  12. from src.client.remote_forward_backward import run_remote_backward, run_remote_forward
  13. from src.client.sequence_manager import RemoteSequenceManager
  14. from src.data_structures import CHAIN_DELIMITER, RemoteSpanInfo
  15. from src.server.handler import TransformerConnectionHandler
  16. from src.utils.misc import DUMMY, is_dummy
  17. logger = get_logger(__file__)
  18. MAX_TOKENS_IN_BATCH = 1024
  19. async def sequential_forward(
  20. inputs: torch.Tensor,
  21. prompts: torch.Tensor,
  22. sequence_manager: RemoteSequenceManager,
  23. start_index: int = 0,
  24. end_index: Optional[int] = None,
  25. ) -> Tuple[torch.Tensor, Sequence[torch.Tensor], Sequence[RemoteSpanInfo]]:
  26. """
  27. Constructs a routing path from <start_index> to <end_index>.
  28. Performs chained forward for each subsequence of blocks on the path.
  29. If some subsequence fails, reconstructs the remaining path and tries to finish the forward.
  30. """
  31. assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3, f"{type(inputs)}: {inputs.ndim}"
  32. inputs_device = inputs.device
  33. inputs_dtype = inputs.dtype
  34. inputs = inputs.cpu()
  35. prompts = prompts.cpu()
  36. end_index = end_index if end_index is not None else len(sequence_manager.block_uids)
  37. assert start_index >= 0 and end_index <= len(sequence_manager.block_uids)
  38. assert is_dummy(prompts) or len(prompts) == len(
  39. sequence_manager.block_uids
  40. ) # should be n_layers - 1 but add extra prompts for convenience
  41. sequences = deque()
  42. intermediate_inputs = []
  43. done_sequences = []
  44. outputs = inputs
  45. block_idx = start_index
  46. while block_idx < end_index:
  47. for attempt_no in itertools.count():
  48. logger.debug(f"Forward: block {block_idx}, attempt {attempt_no}")
  49. try:
  50. if attempt_no >= 1:
  51. sequence_manager.update_()
  52. if not sequences or attempt_no >= 1:
  53. sequences = deque(sequence_manager.make_sequence(block_idx, end_index))
  54. # make_sequence() could return a longer sequence
  55. sequences[-1].end = min(sequences[-1].end, end_index)
  56. logger.debug(f"Found path from block {block_idx} to {end_index} via {len(sequences)} servers")
  57. span = sequences.popleft()
  58. stub = TransformerConnectionHandler.get_stub(sequence_manager.p2p, span.peer_id)
  59. inputs_and_prompts = [inputs, prompts[span.start : span.end]]
  60. span_uids = CHAIN_DELIMITER.join(sequence_manager.block_uids[span.start : span.end])
  61. (outputs,) = await run_remote_forward(
  62. span_uids, stub, sequence_manager.rpc_info, *inputs_and_prompts, timeout=sequence_manager.timeout
  63. )
  64. assert isinstance(outputs, torch.Tensor)
  65. assert outputs.shape == inputs.shape, f"Expected output {inputs.shape}, got {outputs.shape}"
  66. # Save intermediate inputs and subsequences if the forward is already done for them
  67. intermediate_inputs.append(inputs)
  68. done_sequences.append(span)
  69. inputs = outputs
  70. block_idx = span.end
  71. break
  72. except Exception as e:
  73. delay = sequence_manager.get_retry_delay(attempt_no)
  74. logger.warning(
  75. f"Caught exception when running forward from block {block_idx} "
  76. f"(retry in {delay:.0f} sec): {repr(e)}"
  77. )
  78. traceback_level = logging.DEBUG if str(e) else logging.WARNING
  79. logger.log(traceback_level, "See detailed traceback below:", exc_info=True)
  80. await asyncio.sleep(delay)
  81. outputs = inputs.to(device=inputs_device, dtype=inputs_dtype)
  82. intermediate_inputs = [tensor.to(device=inputs_device, dtype=inputs_dtype) for tensor in intermediate_inputs]
  83. return outputs, intermediate_inputs, done_sequences
  84. async def sequential_backward(
  85. grad_outputs: Sequence[torch.Tensor],
  86. intermediate_inputs: List[torch.Tensor],
  87. prompts: torch.Tensor,
  88. forward_sequences: List[RemoteSpanInfo],
  89. sequence_manager: RemoteSequenceManager,
  90. ) -> Tuple[Sequence[torch.Tensor], torch.Tensor]:
  91. """
  92. Performs chained backward for each forward subsequence.
  93. If some subsequence fails, reconstructs the particular sub-path and recovers the backward.
  94. """
  95. assert len(intermediate_inputs) == len(forward_sequences)
  96. grad_outputs_device = grad_outputs[0].device if grad_outputs else None
  97. grad_outputs_dtype = grad_outputs[0].dtype if grad_outputs else None
  98. prompts_device = prompts.device
  99. prompts_dtype = prompts.dtype
  100. grad_outputs = [tensor.cpu() for tensor in grad_outputs]
  101. intermediate_inputs = [tensor.cpu() for tensor in intermediate_inputs]
  102. prompts = prompts.cpu()
  103. grad_prompts_reversed = []
  104. while len(forward_sequences) > 0 and len(intermediate_inputs) > 0:
  105. inputs = intermediate_inputs.pop()
  106. span = forward_sequences.pop()
  107. for attempt_no in itertools.count():
  108. logger.debug(f"Backward: block {span.end - 1}, attempt {attempt_no}")
  109. try:
  110. if attempt_no >= 1:
  111. sequence_manager.update_()
  112. _, backup_inputs, backup_sequences = await sequential_forward(
  113. inputs, prompts, sequence_manager, start_index=span.start, end_index=span.end
  114. )
  115. assert len(backup_inputs) == len(backup_sequences)
  116. assert backup_sequences[0].start == span.start
  117. assert backup_sequences[-1].end == span.end
  118. intermediate_inputs.extend(backup_inputs)
  119. forward_sequences.extend(backup_sequences)
  120. inputs = intermediate_inputs.pop()
  121. span = forward_sequences.pop()
  122. span_uids = CHAIN_DELIMITER.join(sequence_manager.block_uids[span.start : span.end])
  123. stub = TransformerConnectionHandler.get_stub(sequence_manager.p2p, span.peer_id)
  124. grad_outputs, *span_grad_prompts = await run_remote_backward(
  125. span_uids,
  126. stub,
  127. sequence_manager.rpc_info,
  128. inputs,
  129. grad_outputs,
  130. prompts[span.start : span.end],
  131. timeout=sequence_manager.timeout,
  132. )
  133. grad_outputs = [grad_outputs]
  134. grad_prompts_reversed.extend(span_grad_prompts)
  135. break
  136. except Exception as e:
  137. delay = sequence_manager.get_retry_delay(attempt_no)
  138. logger.warning(
  139. f"Caught exception when running backward between blocks {span.start}-{span.end} "
  140. f"(retry in {delay:.0f} sec): {repr(e)}"
  141. )
  142. traceback_level = logging.DEBUG if str(e) else logging.WARNING
  143. logger.log(traceback_level, "See detailed traceback below:", exc_info=True)
  144. await asyncio.sleep(delay)
  145. # For now, we do not support mixed dummy and grad prompts
  146. # Concat in num_layer dimension
  147. grad_prompts = torch.cat(grad_prompts_reversed[::-1], dim=0) if grad_prompts_reversed else None
  148. if grad_outputs_dtype is not None:
  149. grad_outputs = [tensor.to(device=grad_outputs_device, dtype=grad_outputs_dtype) for tensor in grad_outputs]
  150. if grad_prompts is not None:
  151. grad_prompts = grad_prompts.to(device=prompts_device, dtype=prompts_dtype)
  152. return grad_outputs, grad_prompts
  153. async def _gather_forward(input_batches, prompt_batches, sequence_manager):
  154. """Wrapper for asyncio.gather to perform parallel sequential forwards"""
  155. return await asyncio.gather(
  156. *[
  157. sequential_forward(input_batch, prompt_batch, sequence_manager)
  158. for input_batch, prompt_batch in zip(input_batches, prompt_batches)
  159. ]
  160. )
  161. async def _gather_backward(
  162. grad_output_batches, intermediate_input_batches, prompt_batches, forward_sequences, sequence_manager
  163. ):
  164. """Wrapper for asyncio.gather to perform parallel sequential backwards"""
  165. return await asyncio.gather(
  166. *[
  167. sequential_backward((grad_output,), input_batch, prompt_batch, spans, sequence_manager)
  168. for grad_output, input_batch, prompt_batch, spans in zip(
  169. grad_output_batches, intermediate_input_batches, prompt_batches, forward_sequences
  170. )
  171. ]
  172. )
  173. class _RemoteSequentialAutogradFunction(torch.autograd.Function):
  174. """
  175. PyTorch autograd function that provides forward and backward calls for the entire sequence of remote transformer blocks.
  176. This function splits input data into batches with <MAX_TOKENS_IN_BATCH> and performs efficient parallel processing.
  177. """
  178. @staticmethod
  179. def forward(ctx, inputs: torch.Tensor, prompts: torch.Tensor, sequence_manager: RemoteSequenceManager):
  180. batch_size = max(MAX_TOKENS_IN_BATCH // inputs.shape[1], 1)
  181. input_batches: Sequence[torch.Tensor] = inputs.detach().split(batch_size)
  182. if is_dummy(prompts):
  183. prompt_batches = [DUMMY] * len(input_batches)
  184. else:
  185. prompt_batches: Sequence[torch.Tensor] = prompts.detach().split(batch_size, dim=1)
  186. sequence_manager.rpc_info # lazy init
  187. outputs = RemoteExpertWorker.run_coroutine(_gather_forward(input_batches, prompt_batches, sequence_manager))
  188. assert len(outputs) == len(input_batches)
  189. output_batches = [output[0] for output in outputs]
  190. intemediate_input_batches = [output[1] for output in outputs]
  191. sequences_for_batches = [output[2] for output in outputs]
  192. ctx.prompt_batches = prompt_batches
  193. ctx.sequence_manager = sequence_manager
  194. ctx.intemediate_input_batches = intemediate_input_batches
  195. ctx.sequences_for_batches = sequences_for_batches
  196. return torch.cat(output_batches, dim=0)
  197. @staticmethod
  198. def backward(ctx, grad_outputs: torch.Tensor):
  199. intermediate_input_batches: List[Sequence[torch.Tensor]] = ctx.intemediate_input_batches
  200. forward_sequences: List[Sequence[RemoteSpanInfo]] = ctx.sequences_for_batches
  201. ctx.sequence_manager.rpc_info # lazy init
  202. batch_size = max(MAX_TOKENS_IN_BATCH // grad_outputs.shape[1], 1)
  203. grad_output_batches: Sequence[torch.Tensor] = grad_outputs.split(batch_size)
  204. assert len(intermediate_input_batches) == len(grad_output_batches) == len(forward_sequences)
  205. outputs = RemoteExpertWorker.run_coroutine(
  206. _gather_backward(
  207. grad_output_batches,
  208. intermediate_input_batches,
  209. ctx.prompt_batches,
  210. forward_sequences,
  211. ctx.sequence_manager,
  212. )
  213. )
  214. grad_input_batches = [output[0][0] for output in outputs]
  215. grad_prompt_batches = [output[1] for output in outputs]
  216. grad_inputs = torch.cat(grad_input_batches, dim=0)
  217. dummy_grad_prompts = [grad_prompt is None for grad_prompt in grad_prompt_batches]
  218. grad_prompts = torch.cat(grad_prompt_batches, dim=1) if not any(dummy_grad_prompts) else None
  219. return (grad_inputs, grad_prompts, None)