123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 |
- from __future__ import annotations
- import asyncio
- import itertools
- import logging
- import time
- from typing import AsyncIterator, List, Optional
- import torch
- from hivemind import (
- P2P,
- MSGPackSerializer,
- anext,
- deserialize_torch_tensor,
- get_logger,
- nested_flatten,
- serialize_torch_tensor,
- )
- from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
- from hivemind.p2p import StubBase
- from hivemind.proto import runtime_pb2
- from src.client.sequence_manager import RemoteSequenceManager
- from src.data_structures import CHAIN_DELIMITER, ModuleUID, RemoteSpanInfo, RPCInfo
- from src.server.handler import TransformerConnectionHandler
- from src.utils.misc import DUMMY, is_dummy
- logger = get_logger(__file__)
- class _ServerInferenceSession:
- """
- An interface to a single multi-step *inference* session for a a set of blocks on a specific server.
- :note: This class is *not* fault-tolerant out of the box.
- """
- def __init__(
- self,
- uid: ModuleUID,
- rpc_info: RPCInfo,
- inputs_queue: asyncio.Queue,
- outputs_aiter: AsyncIterator,
- *,
- timeout: float,
- max_length: int,
- points: int = 0,
- ):
- self.uid, self.rpc_info = uid, rpc_info
- self.num_blocks = uid.count(CHAIN_DELIMITER) + 1
- self._inputs_queue: asyncio.Queue[runtime_pb2.ExpertRequest] = inputs_queue
- self._outputs_stream: AsyncIterator[runtime_pb2.ExpertResponse] = outputs_aiter
- self.timeout = timeout
- self._serialized_metadata = MSGPackSerializer.dumps(dict(max_length=max_length, points=points))
- self.stepped = False
- self.closed = False
- @classmethod
- async def create(
- cls, stub: StubBase, uid: ModuleUID, rpc_info: RPCInfo, timeout: float, **metadata
- ) -> _ServerInferenceSession:
- """Create a new session for a given remote module. This code is meant to be run inside RemoteExpertWorker"""
- inputs_queue = asyncio.Queue()
- outputs_stream = await asyncio.wait_for(
- stub.rpc_inference(cls._read_inputs_from_queue(inputs_queue)),
- timeout,
- )
- return cls(uid, rpc_info, inputs_queue, outputs_stream, timeout=timeout, **metadata)
- @staticmethod
- async def _read_inputs_from_queue(queue: asyncio.Queue, input_timeout: Optional[float] = None) -> AsyncIterator:
- while True:
- next_input_message = await asyncio.wait_for(queue.get(), input_timeout)
- yield next_input_message
- if not next_input_message.uid and not next_input_message.tensors:
- break # this message means "done sending"
- def step(
- self,
- new_hidden_states: torch.Tensor,
- prompts: Optional[torch.Tensor] = None,
- hypo_ids: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- """
- Inference step: send a chunk of input tesors and receive a chunk of outputs
- :prompts: optional DEEP prompts, added to a prefix of each layer's outputs,
- if specified, deep promts should have shape [num_layers, batch_size, prefix_len, hid_size]
- """
- if self.closed:
- raise Exception("Session is closed, cannot perform step")
- if prompts is None or is_dummy(prompts):
- prompts = DUMMY
- else:
- assert prompts.ndim == 4, "deep promts should have shape [num_layers, batch_size, prefix_len, hid_size]"
- assert prompts.shape[0] == self.num_blocks
- assert prompts.shape[1] in (new_hidden_states.shape[0], 1)
- assert prompts.shape[2] <= new_hidden_states.shape[1]
- assert prompts.shape[3] == new_hidden_states.shape[2]
- if hypo_ids is None or is_dummy(hypo_ids):
- hypo_ids = DUMMY
- else:
- assert len(hypo_ids) == len(new_hidden_states)
- assert hypo_ids.dtype == torch.int64
- # serialize inputs and put them into the queue
- inputs = (new_hidden_states, prompts, hypo_ids)
- outputs_serialized = RemoteExpertWorker.run_coroutine(
- self._step(
- runtime_pb2.ExpertRequest(
- uid=self.uid,
- tensors=[
- serialize_torch_tensor(tensor.to(proto.dtype), proto.compression)
- for tensor, proto in zip(inputs, nested_flatten(self.rpc_info["inference_schema"]))
- ],
- metadata=self._serialized_metadata if not self.stepped else None,
- )
- )
- )
- outputs = list(map(deserialize_torch_tensor, outputs_serialized.tensors))
- assert outputs[0].shape == inputs[0].shape, f"expected outputs[0] to be hidden states but got {outputs[0]}"
- return outputs[0]
- async def _step(self, inputs_serialized: runtime_pb2.ExpertRequest) -> runtime_pb2.ExpertResponse:
- """Inference step on serialized data. This code is meant to be run inside RemoteExpertWorker"""
- await self._inputs_queue.put(inputs_serialized)
- self.stepped = True
- return await asyncio.wait_for(anext(self._outputs_stream), self.timeout)
- def close(self):
- """Finish a given inference session, close the underlying connection"""
- if self._outputs_stream is None:
- return # already closed
- RemoteExpertWorker.run_coroutine(self._aclose_stream())
- self._outputs_stream = self._inputs_queue = None
- self.closed = True
- async def _aclose_stream(self):
- """Close the inference session. This code is meant to be run inside RemoteExpertWorker"""
- if self._outputs_stream is None:
- return # already closed
- if self.stepped:
- await self._inputs_queue.put(runtime_pb2.ExpertRequest()) # empty request will trigger end of session
- try:
- await anext(self._outputs_stream)
- except StopAsyncIteration:
- pass
- def __del__(self):
- self.close()
- def __enter__(self):
- assert not self.closed
- return self
- def __exit__(self, *exc_details):
- self.close()
- class InferenceSession:
- """
- An interface to a multi-step *inference* session for a sequence of remote transformer blocks
- """
- def __init__(self, sequence_manager: RemoteSequenceManager, p2p: P2P, max_length: int, **metadata):
- self._sequence_manager = sequence_manager
- self._p2p = p2p
- self._closed = False
- self._chosen_spans = []
- self._server_sessions = []
- self._server_inputs = [] # Used in case of server failures to regenerate attention caches on new servers
- self._position = 0
- self._max_length = max_length
- self._metadata = metadata
- def _enter_server_sessions(self, chosen_spans: List[RemoteSpanInfo]) -> List[_ServerInferenceSession]:
- server_sessions = []
- try:
- for span in chosen_spans:
- stub = TransformerConnectionHandler.get_stub(self._p2p, span.peer_id)
- span_uids = CHAIN_DELIMITER.join(self._sequence_manager.block_uids[span.start : span.end])
- session = RemoteExpertWorker.run_coroutine(
- _ServerInferenceSession.create(
- stub,
- span_uids,
- rpc_info=self._sequence_manager.rpc_info,
- timeout=self._sequence_manager.timeout,
- max_length=self._max_length,
- **self._metadata,
- )
- )
- server_sessions.append(session)
- session.__enter__()
- return server_sessions
- except:
- self._exit_server_sessions(server_sessions)
- raise
- def _exit_server_sessions(self, server_sessions: List[_ServerInferenceSession]) -> None:
- for session in reversed(server_sessions):
- try:
- session.__exit__(None, None, None)
- except Exception:
- logger.debug("Caught exception while closing connection to server:", exc_info=True)
- def __enter__(self) -> "InferenceSession":
- assert not self._closed and not self._chosen_spans
- return self
- def step(self, inputs: torch.Tensor, prompts: Optional[torch.Tensor] = None, **kwargs) -> torch.Tensor:
- assert not self._closed
- if torch.is_grad_enabled():
- logger.warning("Running inference session with grad enabled. Gradients will *not* be propagated correctly.")
- n_blocks = len(self._sequence_manager)
- if prompts is None or is_dummy(prompts):
- prompts = DUMMY
- else:
- assert prompts.ndim == 4 and prompts.shape[0] == n_blocks
- inputs_device = inputs.device
- inputs_dtype = inputs.dtype
- inputs = inputs.cpu()
- prompts = prompts.cpu()
- n_input_tokens = inputs.shape[1]
- if self._position + n_input_tokens > self._max_length:
- raise ValueError(
- f"Maximum length exceeded: prefix {self._position} + current {n_input_tokens} exceeds pre-allocated maximum {self._max_length}"
- )
- server_idx = 0
- block_idx = 0
- recovery_until = -1 # Recovery mode is disabled until a failure happens
- while block_idx < n_blocks:
- for attempt_no in itertools.count():
- logger.debug(f"Inference: block {block_idx}, attempt {attempt_no}")
- try:
- if attempt_no >= 1:
- self._sequence_manager.update_()
- if not self._chosen_spans or not self._server_sessions or attempt_no >= 1:
- # If there is a failed server session, this code closes it
- self._exit_server_sessions(self._server_sessions[server_idx : server_idx + 1])
- n_prev_spans = len(self._chosen_spans)
- update_end = self._chosen_spans[server_idx].end if server_idx < n_prev_spans else n_blocks
- if attempt_no >= 1 and update_end > recovery_until:
- logger.info(
- f"Due to a server failure, remote attention caches "
- f"from block {block_idx} to {update_end} will be regenerated"
- )
- recovery_until = max(recovery_until, update_end)
- updated_spans = self._sequence_manager.make_sequence(block_idx, update_end)
- # make_sequence() could return a longer sequence
- updated_spans[-1].end = min(updated_spans[-1].end, update_end)
- updated_sessions = self._enter_server_sessions(updated_spans)
- logger.debug(
- f"Found path from block {block_idx} to {update_end} via {len(updated_spans)} servers"
- )
- # If there is a failed span, this code replaces it, otherwise it just adds new ones
- self._chosen_spans[server_idx : server_idx + 1] = updated_spans
- self._server_sessions[server_idx : server_idx + 1] = updated_sessions
- recovery_inputs = self._server_inputs[server_idx] if server_idx < n_prev_spans else None
- self._server_inputs[server_idx : server_idx + 1] = [recovery_inputs] + [None] * (
- len(updated_spans) - 1
- )
- assert len(self._chosen_spans) == len(self._server_sessions) == len(self._server_inputs), (
- f"Broken state: {len(self._chosen_spans)} spans, {len(self._server_sessions)} sessions, "
- f"{len(self._server_inputs)} inputs"
- )
- session = self._server_sessions[server_idx]
- span = self._chosen_spans[server_idx]
- if self._server_inputs[server_idx] is None:
- self._server_inputs[server_idx] = inputs
- elif self._server_inputs[server_idx].shape[1] == self._position:
- self._server_inputs[server_idx] = torch.cat(
- [self._server_inputs[server_idx], inputs[:, -n_input_tokens:]], dim=1
- )
- assert self._server_inputs[server_idx].shape[1] == self._position + n_input_tokens, (
- f"Broken input cache: server_idx={server_idx} shape={self._server_inputs[server_idx].shape} "
- f"position={self._position} n_input_tokens={n_input_tokens}"
- )
- if not session.stepped:
- inputs = self._server_inputs[server_idx] # Pass full inputs including prefix
- else:
- inputs = inputs[:, -n_input_tokens:] # No need to pass prefix further
- outputs = session.step(inputs, prompts[span.start : span.end], **kwargs)
- assert (
- inputs.shape == outputs.shape
- ), f"Shape mismatch: inputs.shape={inputs.shape}, outputs.shape={outputs.shape})"
- inputs = outputs
- server_idx += 1
- block_idx = span.end
- break
- except Exception as e:
- delay = self._sequence_manager.get_retry_delay(attempt_no)
- logger.warning(
- f"Caught exception when running inference from block {block_idx} "
- f"(retry in {delay:.0f} sec): {repr(e)}"
- )
- traceback_level = logging.DEBUG if str(e) else logging.WARNING
- logger.log(traceback_level, "See detailed traceback below:", exc_info=True)
- time.sleep(delay)
- self._position += n_input_tokens
- outputs = inputs.to(device=inputs_device, dtype=inputs_dtype)
- return outputs
- def close(self, *exc_details):
- """Finish a given inference session, close the underlying connection"""
- if not self._closed:
- self._server_inputs.clear()
- self._exit_server_sessions(self._server_sessions)
- self._server_sessions.clear()
- self._chosen_spans.clear()
- self._closed = True
- def __exit__(self, *exc_details):
- self.close(*exc_details)
- def __del__(self):
- self.close()
|