test_block_exact_match.py 1.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344
  1. import random
  2. import hivemind
  3. import pytest
  4. import torch
  5. import transformers
  6. from hivemind import P2PHandlerError
  7. from test_utils import *
  8. import src
  9. from src.bloom.from_pretrained import load_pretrained_block
  10. from src.client.remote_sequential import RemoteSequential
  11. @pytest.mark.forked
  12. def test_remote_block_exact_match(atol_forward=1e-5, atol_inference=1e-3):
  13. dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
  14. config = transformers.AutoConfig.from_pretrained(MODEL_NAME)
  15. config = src.DistributedBloomConfig.from_pretrained(MODEL_NAME)
  16. for block_index in random.sample(range(config.n_layer), 3):
  17. remote_block = RemoteSequential(config, dht)[block_index]
  18. assert isinstance(remote_block, RemoteSequential)
  19. inputs = torch.randn(1, 8, config.hidden_size)
  20. (outputs_forward,) = remote_block(inputs)
  21. outputs_inference = []
  22. with remote_block.inference_session(max_length=inputs.shape[1]) as sess:
  23. for i in range(inputs.shape[1]):
  24. outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
  25. # test that max length is respected
  26. with pytest.raises(P2PHandlerError) as exc_info:
  27. sess.step(inputs[:, -1:, :])
  28. assert "Maximum length exceeded" in repr(exc_info.value)
  29. outputs_inference = torch.cat(outputs_inference, dim=1)
  30. ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32)
  31. (outputs_local,) = ref_block(inputs)
  32. assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward)
  33. assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)