test_full_model.py 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
  1. import peft
  2. import pytest
  3. import torch
  4. import transformers
  5. from hivemind import get_logger
  6. from transformers.generation import BeamSearchScorer
  7. from transformers.models.bloom import BloomForCausalLM
  8. from petals import DistributedBloomForCausalLM
  9. from test_utils import *
  10. logger = get_logger(__name__)
  11. @pytest.mark.forked
  12. @pytest.mark.parametrize("use_peft", (True, False) if ADAPTER_NAME else (False,))
  13. @pytest.mark.parametrize("pass_empty_tensors", (True, False))
  14. def test_full_model_exact_match(use_peft: bool, pass_empty_tensors: bool, atol_forward=1e-3, atol_inference=1e-3):
  15. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  16. model = DistributedBloomForCausalLM.from_pretrained(
  17. MODEL_NAME,
  18. initial_peers=INITIAL_PEERS,
  19. low_cpu_mem_usage=True,
  20. torch_dtype=torch.float32,
  21. active_adapter=ADAPTER_NAME if use_peft else None,
  22. )
  23. config = model.config
  24. assert isinstance(model, DistributedBloomForCausalLM)
  25. assert len(model.transformer.h) == model.config.num_hidden_layers
  26. test_inputs = tokenizer("A quick brown fox was minding its own buisness", return_tensors="pt")["input_ids"]
  27. with torch.inference_mode():
  28. parallel_outputs = model.forward(test_inputs).logits
  29. assert torch.all(torch.isfinite(parallel_outputs))
  30. logger.info("Forward outputs are finite")
  31. embs = model.transformer.word_embeddings(test_inputs)
  32. embs = model.transformer.word_embeddings_layernorm(embs)
  33. recurrent_outputs = []
  34. with model.transformer.h.inference_session(max_length=embs.shape[1]) as sess:
  35. if pass_empty_tensors:
  36. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  37. for t in range(embs.shape[1]):
  38. if t == 4:
  39. recurrent_outputs.append(sess.step(embs[:, 4:9, :]))
  40. elif 4 < t < 9:
  41. continue
  42. else:
  43. recurrent_outputs.append(sess.step(embs[:, t : t + 1, :]))
  44. if t == 2 and pass_empty_tensors:
  45. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  46. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  47. recurrent_outputs = torch.cat(recurrent_outputs, dim=1)
  48. recurrent_outputs = model.transformer.ln_f(recurrent_outputs)
  49. recurrent_outputs = model.lm_head(recurrent_outputs)
  50. assert torch.allclose(recurrent_outputs, parallel_outputs, rtol=0, atol=atol_inference)
  51. logger.info("Inference is consistent with forward")
  52. del model, embs, recurrent_outputs
  53. if REF_NAME:
  54. ref_model = transformers.BloomForCausalLM.from_pretrained(
  55. REF_NAME, low_cpu_mem_usage=True, torch_dtype=torch.float32
  56. )
  57. if use_peft:
  58. ref_model = peft.PeftModel.from_pretrained(ref_model, ADAPTER_NAME)
  59. ref_model.train(False)
  60. if config.vocab_size < ref_model.config.vocab_size:
  61. ref_model.resize_token_embeddings(config.vocab_size)
  62. logger.warning(f"Resized the reference model embeddings, new total = {ref_model.config.vocab_size}")
  63. dummy_mask = torch.ones_like(test_inputs, dtype=torch.bool)
  64. # note: this creates a dummy mask to make the test compatible with older transformer versions
  65. # prior to https://github.com/huggingface/transformers/pull/17837
  66. ref_outputs = ref_model.forward(test_inputs, attention_mask=dummy_mask).logits.float()
  67. assert torch.allclose(ref_outputs, parallel_outputs, rtol=0, atol=atol_forward)
  68. logger.warning(f"Distributed forward is consistent with {type(ref_model)}.forward")
  69. del ref_model, ref_outputs, dummy_mask
  70. else:
  71. logger.warning("Did not test exact match with local model: REF_NAME environment variable is not set")
  72. assert False
  73. @pytest.mark.forked
  74. def test_greedy_generation(max_new_tokens=4):
  75. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  76. model = DistributedBloomForCausalLM.from_pretrained(
  77. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  78. )
  79. inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  80. remote_outputs = model.generate(
  81. inputs,
  82. max_new_tokens=max_new_tokens,
  83. )
  84. hf_outputs = BloomForCausalLM.greedy_search(model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens)
  85. assert torch.allclose(remote_outputs, hf_outputs), "Greedy search results are not identical to HF"
  86. inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[
  87. "input_ids"
  88. ]
  89. remote_outputs_batch = model.generate(
  90. inputs_batch,
  91. max_new_tokens=max_new_tokens,
  92. )
  93. hf_outputs_batch = BloomForCausalLM.greedy_search(
  94. model, input_ids=inputs_batch, max_length=inputs_batch.size(1) + max_new_tokens
  95. )
  96. assert torch.allclose(
  97. remote_outputs_batch, hf_outputs_batch
  98. ), "Greedy search results are not identical to HF in multibatch mode"
  99. @pytest.mark.forked
  100. @pytest.mark.parametrize("sampling_options", [dict(), dict(temperature=100.0), dict(top_k=5), dict(top_p=0.9)])
  101. @pytest.mark.skip("Sampling is currently not consistent with outputs from Transformers")
  102. def test_sampling(sampling_options, max_new_tokens=4):
  103. torch.manual_seed(0)
  104. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  105. model = DistributedBloomForCausalLM.from_pretrained(
  106. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  107. )
  108. logits_warper = BloomForCausalLM._get_logits_warper(model, num_beams=1, **sampling_options)
  109. inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  110. with torch.random.fork_rng():
  111. remote_outputs = model.generate(
  112. inputs,
  113. max_new_tokens=max_new_tokens,
  114. do_sample=True,
  115. **sampling_options,
  116. )
  117. with torch.random.fork_rng():
  118. hf_outputs = BloomForCausalLM.sample(
  119. model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens, logits_warper=logits_warper
  120. )
  121. assert torch.allclose(remote_outputs, hf_outputs), "Sampling results are not identical to HF"
  122. inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[
  123. "input_ids"
  124. ]
  125. with torch.random.fork_rng():
  126. remote_outputs_batch = model.generate(
  127. inputs_batch,
  128. max_new_tokens=max_new_tokens,
  129. do_sample=True,
  130. **sampling_options,
  131. )
  132. with torch.random.fork_rng():
  133. hf_outputs_batch = BloomForCausalLM.sample(
  134. model,
  135. input_ids=inputs_batch,
  136. max_length=inputs_batch.size(1) + max_new_tokens,
  137. logits_warper=logits_warper,
  138. )
  139. assert torch.allclose(
  140. remote_outputs_batch, hf_outputs_batch
  141. ), "Sampling results are not identical to HF in multibatch mode"
  142. @pytest.mark.forked
  143. def test_beam_search_generation(max_new_tokens=4, num_beams=2):
  144. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  145. model = DistributedBloomForCausalLM.from_pretrained(
  146. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  147. )
  148. text = "A cat sat on a mat"
  149. inputs = tokenizer(text, return_tensors="pt")["input_ids"]
  150. remote_outputs = model.generate(
  151. inputs,
  152. max_new_tokens=max_new_tokens,
  153. num_beams=num_beams,
  154. )
  155. beam_scorer = BeamSearchScorer(
  156. batch_size=inputs.size(0),
  157. num_beams=num_beams,
  158. device=inputs.device,
  159. length_penalty=0,
  160. do_early_stopping=False,
  161. )
  162. hf_inputs = tokenizer([text] * 2, return_tensors="pt")["input_ids"]
  163. hf_outputs = BloomForCausalLM.beam_search(
  164. model, input_ids=hf_inputs, max_length=inputs.size(1) + max_new_tokens, beam_scorer=beam_scorer
  165. )
  166. assert torch.allclose(remote_outputs, hf_outputs), "Beam search results are not identical to HF"