1234567891011121314151617181920212223242526272829303132333435 |
- import random
- import pytest
- import torch
- from petals import AutoDistributedConfig, RemoteSequential
- from petals.server.block_functions import MAX_SHORT_INFERENCE_TOKENS
- from petals.server.from_pretrained import load_pretrained_block
- from test_utils import *
- @pytest.mark.forked
- def test_remote_block_with_cache_invalidation_exact_match(atol_forward=1e-4, atol_inference=1e-3):
- config = AutoDistributedConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS)
- remote_sequential = RemoteSequential(config)
- block_index = random.randint(0, config.num_hidden_layers - 1)
- remote_block = remote_sequential[block_index]
- inputs = torch.randn(1, MAX_SHORT_INFERENCE_TOKENS - 50, config.hidden_size)
- short_inputs = torch.randn(1, MAX_SHORT_INFERENCE_TOKENS - 50, config.hidden_size)
- short_inputs[:, :2, :] = inputs[:, :2, :]
- initial_outputs_inference = None
- secondary_outputs_inference = None
- with torch.inference_mode():
- with remote_block.inference_session(max_length=inputs.shape[1]) as sess:
- initial_outputs_inference = sess.step(inputs)
- secondary_outputs_inference = sess.step(short_inputs[:, 2:, :], start_from_position=2)
- result = torch.cat([initial_outputs_inference[:, :2, :], secondary_outputs_inference], dim=1)
- ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32)
- (outputs_local,) = ref_block(short_inputs)
- assert torch.allclose(outputs_local, result, rtol=0, atol=atol_inference)
|