test_full_model.py 2.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. import torch
  2. import transformers
  3. from hivemind import get_logger, use_hivemind_log_handler
  4. from test_utils import *
  5. from src.client.remote_model import DistributedBloomForCausalLM
  6. use_hivemind_log_handler("in_root_logger")
  7. logger = get_logger(__file__)
  8. def test_full_model_exact_match(atol_forward=1e-3, atol_inference=1e-3):
  9. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  10. model = DistributedBloomForCausalLM.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS)
  11. assert isinstance(model, DistributedBloomForCausalLM)
  12. assert len(model.transformer.h) == model.config.n_layer
  13. test_inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  14. with torch.no_grad():
  15. parallel_outputs = model.forward(test_inputs).logits
  16. assert torch.all(torch.isfinite(parallel_outputs))
  17. logger.info("Forward outputs are finite")
  18. embs = model.transformer.word_embeddings(test_inputs)
  19. embs = model.transformer.word_embeddings_layernorm(embs)
  20. recurrent_outputs = []
  21. with model.transformer.h.inference_session() as sess:
  22. for t in range(embs.shape[1]):
  23. recurrent_outputs.append(sess.step(embs[:, t : t + 1, :]))
  24. recurrent_outputs = torch.cat(recurrent_outputs, dim=1)
  25. recurrent_outputs = model.transformer.ln_f(recurrent_outputs)
  26. dictionary = model.transformer.word_embeddings.weight.t()
  27. recurrent_outputs = recurrent_outputs.to(dictionary.dtype)
  28. recurrent_outputs = (recurrent_outputs @ dictionary).float()
  29. assert torch.allclose(recurrent_outputs, parallel_outputs, rtol=0, atol=atol_inference)
  30. logger.info("Inference is consistent with forward")
  31. del model, recurrent_outputs
  32. if REF_NAME:
  33. ref_model = transformers.AutoModelForCausalLM.from_pretrained(REF_NAME)
  34. dummy_mask = torch.ones_like(test_inputs, dtype=torch.bool)
  35. # note: this creates a dummy mask to make the test compatible with older transformer versions
  36. # prior to https://github.com/huggingface/transformers/pull/17837
  37. ref_outputs = ref_model.forward(test_inputs, attention_mask=dummy_mask).logits
  38. assert torch.allclose(ref_outputs, parallel_outputs, rtol=0, atol=atol_forward)
  39. logger.warning(f"Distributed forward is consistent with {type(ref_model)}.forward")
  40. del ref_model, ref_outputs, dummy_mask
  41. else:
  42. logger.warning("Did not test exact match with local model: REF_NAME environment variable is not set")