test_block_exact_match.py 1.5 KB

12345678910111213141516171819202122232425262728293031323334353637
  1. import random
  2. import hivemind
  3. import torch
  4. import transformers
  5. from src.bloom.from_pretrained import load_pretrained_block
  6. from src.client.remote_block import RemoteTransformerBlock
  7. from src.data_structures import UID_DELIMITER
  8. from src.dht_utils import get_remote_module
  9. from test_utils import *
  10. def test_remote_block_exact_match(atol_forward=1e-5, atol_inference=1e-3):
  11. dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
  12. config = transformers.AutoConfig.from_pretrained(MODEL_NAME)
  13. for block_index in random.sample(range(config.n_layer), 3):
  14. block_uid = f"{MODEL_NAME}{UID_DELIMITER}{block_index}"
  15. remote_block = get_remote_module(dht, block_uid)
  16. assert remote_block is not None, f"Could not find {block_uid} in DHT"
  17. assert isinstance(remote_block, RemoteTransformerBlock)
  18. inputs = torch.randn(1, 8, config.hidden_size)
  19. (outputs_forward,) = remote_block(inputs)
  20. outputs_inference = []
  21. with remote_block.inference_session() as sess:
  22. for i in range(inputs.shape[1]):
  23. outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
  24. outputs_inference = torch.cat(outputs_inference, dim=1)
  25. ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32)
  26. (outputs_local,) = ref_block(inputs)
  27. assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward)
  28. assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)