test_full_model.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
  1. import pytest
  2. import torch
  3. import transformers
  4. from hivemind import get_logger, use_hivemind_log_handler
  5. from test_utils import *
  6. from transformers.generation import BeamSearchScorer
  7. from transformers.models.bloom import BloomForCausalLM
  8. from petals.client.remote_model import DistributedBloomForCausalLM
  9. use_hivemind_log_handler("in_root_logger")
  10. logger = get_logger(__file__)
  11. @pytest.mark.forked
  12. @pytest.mark.parametrize("pass_empty_tensors", (True, False))
  13. def test_full_model_exact_match(pass_empty_tensors: bool, atol_forward=1e-3, atol_inference=1e-3):
  14. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  15. model = DistributedBloomForCausalLM.from_pretrained(
  16. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  17. )
  18. config = model.config
  19. assert isinstance(model, DistributedBloomForCausalLM)
  20. assert len(model.transformer.h) == model.config.n_layer
  21. test_inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  22. with torch.inference_mode():
  23. parallel_outputs = model.forward(test_inputs).logits
  24. assert torch.all(torch.isfinite(parallel_outputs))
  25. logger.info("Forward outputs are finite")
  26. embs = model.transformer.word_embeddings(test_inputs)
  27. embs = model.transformer.word_embeddings_layernorm(embs)
  28. recurrent_outputs = []
  29. with model.transformer.h.inference_session(max_length=embs.shape[1]) as sess:
  30. if pass_empty_tensors:
  31. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  32. for t in range(embs.shape[1]):
  33. recurrent_outputs.append(sess.step(embs[:, t : t + 1, :]))
  34. if t == int(embs.shape[1] // 2) and pass_empty_tensors:
  35. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  36. recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size)))
  37. recurrent_outputs = torch.cat(recurrent_outputs, dim=1)
  38. recurrent_outputs = model.transformer.ln_f(recurrent_outputs)
  39. recurrent_outputs = model.lm_head(recurrent_outputs)
  40. assert torch.allclose(recurrent_outputs, parallel_outputs, rtol=0, atol=atol_inference)
  41. logger.info("Inference is consistent with forward")
  42. del model, embs, recurrent_outputs
  43. if REF_NAME:
  44. ref_model = transformers.BloomForCausalLM.from_pretrained(
  45. REF_NAME, low_cpu_mem_usage=True, torch_dtype=torch.float32
  46. )
  47. if config.vocab_size < ref_model.config.vocab_size:
  48. ref_model.resize_token_embeddings(config.vocab_size)
  49. logger.warning(f"Resized the reference model embeddings, new total = {ref_model.config.vocab_size}")
  50. dummy_mask = torch.ones_like(test_inputs, dtype=torch.bool)
  51. # note: this creates a dummy mask to make the test compatible with older transformer versions
  52. # prior to https://github.com/huggingface/transformers/pull/17837
  53. ref_outputs = ref_model.forward(test_inputs, attention_mask=dummy_mask).logits.float()
  54. assert torch.allclose(ref_outputs, parallel_outputs, rtol=0, atol=atol_forward)
  55. logger.warning(f"Distributed forward is consistent with {type(ref_model)}.forward")
  56. del ref_model, ref_outputs, dummy_mask
  57. else:
  58. logger.warning("Did not test exact match with local model: REF_NAME environment variable is not set")
  59. assert False
  60. @pytest.mark.forked
  61. def test_greedy_generation(max_new_tokens=4):
  62. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  63. model = DistributedBloomForCausalLM.from_pretrained(
  64. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  65. )
  66. inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  67. remote_outputs = model.generate(
  68. inputs,
  69. max_new_tokens=max_new_tokens,
  70. )
  71. hf_outputs = BloomForCausalLM.greedy_search(model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens)
  72. assert torch.allclose(remote_outputs, hf_outputs), "Greedy search results are not identical to HF"
  73. inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[
  74. "input_ids"
  75. ]
  76. remote_outputs_batch = model.generate(
  77. inputs_batch,
  78. max_new_tokens=max_new_tokens,
  79. )
  80. hf_outputs_batch = BloomForCausalLM.greedy_search(
  81. model, input_ids=inputs_batch, max_length=inputs_batch.size(1) + max_new_tokens
  82. )
  83. assert torch.allclose(
  84. remote_outputs_batch, hf_outputs_batch
  85. ), "Greedy search results are not identical to HF in multibatch mode"
  86. @pytest.mark.forked
  87. @pytest.mark.parametrize("sampling_options", [dict(), dict(temperature=100.0), dict(top_k=5), dict(top_p=0.9)])
  88. @pytest.mark.skip("Sampling is currently not consistent with outputs from Transformers")
  89. def test_sampling(sampling_options, max_new_tokens=4):
  90. torch.manual_seed(0)
  91. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  92. model = DistributedBloomForCausalLM.from_pretrained(
  93. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  94. )
  95. logits_warper = BloomForCausalLM._get_logits_warper(model, num_beams=1, **sampling_options)
  96. inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"]
  97. with torch.random.fork_rng():
  98. remote_outputs = model.generate(
  99. inputs,
  100. max_new_tokens=max_new_tokens,
  101. do_sample=True,
  102. **sampling_options,
  103. )
  104. with torch.random.fork_rng():
  105. hf_outputs = BloomForCausalLM.sample(
  106. model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens, logits_warper=logits_warper
  107. )
  108. assert torch.allclose(remote_outputs, hf_outputs), "Sampling results are not identical to HF"
  109. inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[
  110. "input_ids"
  111. ]
  112. with torch.random.fork_rng():
  113. remote_outputs_batch = model.generate(
  114. inputs_batch,
  115. max_new_tokens=max_new_tokens,
  116. do_sample=True,
  117. **sampling_options,
  118. )
  119. with torch.random.fork_rng():
  120. hf_outputs_batch = BloomForCausalLM.sample(
  121. model,
  122. input_ids=inputs_batch,
  123. max_length=inputs_batch.size(1) + max_new_tokens,
  124. logits_warper=logits_warper,
  125. )
  126. assert torch.allclose(
  127. remote_outputs_batch, hf_outputs_batch
  128. ), "Sampling results are not identical to HF in multibatch mode"
  129. @pytest.mark.forked
  130. def test_beam_search_generation(max_new_tokens=4, num_beams=2):
  131. tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME)
  132. model = DistributedBloomForCausalLM.from_pretrained(
  133. MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32
  134. )
  135. text = "A cat sat on a mat"
  136. inputs = tokenizer(text, return_tensors="pt")["input_ids"]
  137. remote_outputs = model.generate(
  138. inputs,
  139. max_new_tokens=max_new_tokens,
  140. num_beams=num_beams,
  141. )
  142. beam_scorer = BeamSearchScorer(
  143. batch_size=inputs.size(0),
  144. num_beams=num_beams,
  145. device=inputs.device,
  146. length_penalty=0,
  147. do_early_stopping=False,
  148. )
  149. hf_inputs = tokenizer([text] * 2, return_tensors="pt")["input_ids"]
  150. hf_outputs = BloomForCausalLM.beam_search(
  151. model, input_ids=hf_inputs, max_length=inputs.size(1) + max_new_tokens, beam_scorer=beam_scorer
  152. )
  153. assert torch.allclose(remote_outputs, hf_outputs), "Beam search results are not identical to HF"