import random import hivemind import pytest import torch import transformers from test_utils import * from src.bloom.from_pretrained import load_pretrained_block from src.client.remote_block import RemoteTransformerBlock from src.data_structures import UID_DELIMITER from src.dht_utils import get_remote_module @pytest.mark.forked def test_remote_block_exact_match(atol_forward=1e-5, atol_inference=1e-3): dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True) config = transformers.AutoConfig.from_pretrained(MODEL_NAME) for block_index in random.sample(range(config.n_layer), 3): block_uid = f"{MODEL_NAME}{UID_DELIMITER}{block_index}" remote_block = get_remote_module(dht, block_uid) assert remote_block is not None, f"Could not find {block_uid} in DHT" assert isinstance(remote_block, RemoteTransformerBlock) inputs = torch.randn(1, 8, config.hidden_size) (outputs_forward,) = remote_block(inputs) outputs_inference = [] with remote_block.inference_session() as sess: for i in range(inputs.shape[1]): outputs_inference.append(sess.step(inputs[:, i : i + 1, :])) outputs_inference = torch.cat(outputs_inference, dim=1) ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32) (outputs_local,) = ref_block(inputs) assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward) assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)