#!/usr/bin/env bash source ~/miniconda3/etc/profile.d/conda.sh # If you use anaconda: source ~/anaconda/etc/profile.d/conda.sh if conda env list | grep ".*bloom-demo-benchmark.*" >/dev/null 2>/dev/null; then conda activate bloom-demo-benchmark else conda create -y --name bloom-demo-benchmark python=3.8.12 pip conda activate bloom-demo-benchmark conda install -y -c conda-forge cudatoolkit-dev==11.3.1 cudatoolkit==11.3.1 cudnn==8.2.1.32 pip install -i https://pypi.org/simple torch==1.12.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html pip install -i https://test.pypi.org/simple/ bitsandbytes-cuda113 pip install -i https://pypi.org/simple -r demo-requirements.txt fi # Please set up INITIAL_PEER="/ip4/172.27.77.65/tcp/38457/p2p/QmWCiRzNYhtSUdPT3toMjFpG9BWPMrrce4WYGWCaWqrESV" MODEL_NAME="bigscience/test-bloomd" HOST_MADDR="/ip4/0.0.0.0/tcp/30000" SERVER_ID_PATH="./server.id" GPU_ID="0" NUM_BLOCKS="3" # one converted block consumes ~3Gb export OMP_NUM_THREADS="16" # just in case CUDA_VISIBLE_DEVICES=${GPU_ID} python -m cli.run_server --converted_model_name_or_path ${MODEL_NAME} --torch_dtype float16 --initial_peer ${INITIAL_PEER} \ --compression BLOCKWISE_8BIT --identity_path ${SERVER_ID_PATH} --host_maddrs ${HOST_MADDR} \ --num_blocks ${NUM_BLOCKS} --load_in_8bit