from typing import List, Optional import torch import torch.nn.functional as F from src.utils.generation_algorithms import DecodingAlgorithm, GreedyAlgorithm, NucleusAlgorithm, TopKAlgorithm from src.utils.generation_constraints import ABCBloomConstraint, EosConstraint, MaxNewTokensConstraint class RemoteGenerationMixin: """ A class containing all functions for auto-regressive text generation, to be used as a mixin in [`BloomForCausalLM`]. The class exposes can be used for: - *greedy decoding*. - *multinomial sampling*. This class is similar to transformer's [`generation_utils.GenerationMixin`], it can be used instead of it. However, it has some differences. """ @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, do_sample: Optional[bool] = None, temperature: float = 1.0, top_k: Optional[int] = None, top_p: Optional[float] = None, bos_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, pad_token_id: Optional[int] = None, max_length: Optional[int] = None, max_new_tokens: Optional[int] = None, decoding_algorithm: Optional[DecodingAlgorithm] = None, provided_constraints: List[ABCBloomConstraint] = [], **model_kwargs, ) -> torch.LongTensor: """ Generates sequences of token ids for models with a language modeling head. :param inputs: The input tokens to the model. :param do_sample: Whether to sample from the model predictions or take the argmax. :param temperature: The temperature to use for sampling. :param top_k: The number of results to return. :param top_p: The cumulative probability of results to return. :param bos_token_id: The id of the beginning of sentence token. :param eos_token_id: The id of the end of sentence token. :param pad_token_id: The id of the padding token. :param max_new_tokens: The maximum number of tokens to generate. :param decoding_algorithm: The decoding algorithm to use. :param provided_constraints: A list of constraints to use. :param model_kwargs: Additional arguments to pass to the model. """ assert ( model_kwargs.get("logits_processor", None) is None ), "For RemoteGenerationMixin models use BloomConstraints instead of logits_processor" assert ( model_kwargs.get("logits_wrapper", None) is None ), "For RemoveGenerationMixin models use DecodingAlgorithm instead of logits_wrapper" assert ( model_kwargs.get("stopping_criteria", None) is None ), "For RemoteGenerationMixin models use BloomConstraints instead of stopping_criteria" bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id if max_length is not None and max_new_tokens is None: max_new_tokens = max_length - inputs.size(1) assert max_new_tokens > 0, f"Provided max_length is less than prefix size: {max_length} < {inputs.size(1)}" if inputs is None: assert bos_token_id is not None, "You have to provide a bos_token_id if you do not provide inputs" inputs = torch.tensor([[bos_token_id]]) if decoding_algorithm is None: if do_sample: decoding_algorithm = self._choose_sample_algorithm(temperature, top_k, top_p) else: decoding_algorithm = GreedyAlgorithm() constraints = self._get_constraints( inputs=inputs, eos_token_id=eos_token_id, pad_token_id=pad_token_id, max_new_tokens=max_new_tokens, provided_constraints=provided_constraints, ) with self.transformer.h.inference_session() as sess: outputs = [] if torch.any(inputs == pad_token_id): # TODO: move to prepare_inputs outputs += [inputs[:, : inputs.size(1) - (inputs == pad_token_id).sum(-1).max()]] else: outputs += [inputs] last_token_id = None seq_idx = outputs[0].size(1) hypo_ids = torch.arange(outputs[0].size(0)) while True: embs = self.transformer.word_embeddings(outputs[-1]) embs = self.transformer.word_embeddings_layernorm(embs) hidden_state = sess.step(embs)[:, -1] hidden_state = self.transformer.ln_f(hidden_state) lm_logits = self.lm_head(hidden_state) for constraint in constraints: lm_logits = constraint(last_token_id, lm_logits, hypo_ids) last_token_id, hypo_ids = decoding_algorithm(lm_logits) if seq_idx < inputs.size(1): # TODO: why is it not a constraint? pad_token_mask = inputs[:, seq_idx : seq_idx + 1] == pad_token_id last_token_id = (~pad_token_mask) * inputs[ :, seq_idx : seq_idx + 1 ] + pad_token_mask * last_token_id if torch.all(last_token_id == eos_token_id): break outputs.append(last_token_id) seq_idx += 1 return torch.cat(outputs, dim=-1) def greedy_search( self, input_ids: torch.LongTensor, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, provided_constraints: List[ABCBloomConstraint] = [], **model_kwargs, ) -> torch.LongTensor: """ Generates sequences of token ids for models with a language modeling head. Uses greedy search. :param input_ids: The input tokens to the model. :param max_length: The maximum length of the sequence to generate. :param pad_token_id: The id of the padding token. :param eos_token_id: The id of the end of sentence token. :param provided_constraints: A list of constraints to use. """ return self.generate( inputs=input_ids, max_new_tokens=max_length, pad_token_id=pad_token_id, eos_token_id=eos_token_id, decoding_algorithm=GreedyAlgorithm(), provided_constraints=provided_constraints, **model_kwargs, ) def sample( self, input_ids: torch.LongTensor, temperature: float = 1.0, top_k: Optional[int] = None, top_p: Optional[float] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, provided_constraints: List[ABCBloomConstraint] = [], **model_kwargs, ) -> torch.LongTensor: """ Generates sequences of token ids for models with a language modeling head. Uses sampling. Uses multinomial sampling algorithm. If top_k is provided, uses top_k sampling. If top_p is provided, uses nucleus sampling. :param: input_ids: The input tokens to the model. :param: temperature: The temperature to use for sampling. :param: top_k: The number of samples to use for top_k sampling. :param: top_p: The probability of using top_p sampling. :param: max_length: The maximum length of the sequence to generate. :param: pad_token_id: The id of the padding token. :param: eos_token_id: The id of the end of sentence token. :param: provided_constraints: A list of constraints to use. :param: model_kwargs: Additional kwargs to pass to the model. """ return self.generate( inputs=input_ids, max_new_tokens=max_length, pad_token_id=pad_token_id, eos_token_id=eos_token_id, decoding_algorithm=self._choose_sample_algorithm(temperature, top_k, top_p), provided_constraints=provided_constraints, **model_kwargs, ) def beam_search( self, input_ids: torch.LongTensor, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, provided_constraints: List[ABCBloomConstraint] = [], **model_kwargs, ) -> torch.LongTensor: raise NotImplementedError def beam_sample( self, input_ids: torch.LongTensor, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, provided_constraints: List[ABCBloomConstraint] = [], **model_kwargs, ) -> torch.LongTensor: raise NotImplementedError def group_beam_search( self, input_ids: torch.LongTensor, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, provided_constraints: List[ABCBloomConstraint] = [], **model_kwargs, ) -> torch.LongTensor: raise NotImplementedError def _choose_sample_algorithm( self, temperature: float = 1.0, top_k: Optional[int] = None, top_p: Optional[float] = None, ) -> DecodingAlgorithm: if (top_k is not None) and (top_p is not None): raise ValueError("You have to provide only top_k or top_p for sampling") if top_k: return TopKAlgorithm(top_k, temperature) elif top_p: return NucleusAlgorithm(top_p, temperature) def _get_constraints( self, inputs: Optional[torch.Tensor] = None, eos_token_id: Optional[int] = None, pad_token_id: Optional[int] = None, max_new_tokens: Optional[int] = None, provided_constraints: List[ABCBloomConstraint] = [], ) -> List[ABCBloomConstraint]: constraints = [] constraints.extend(provided_constraints) if max_new_tokens is not None: constraints.append(MaxNewTokensConstraint(inputs, max_new_tokens, eos_token_id, pad_token_id)) constraints.append(EosConstraint(inputs, eos_token_id, pad_token_id)) return constraints