import contextlib from typing import AsyncIterator, Dict, List, Optional, Sequence, Union import torch from hivemind import ( DHT, MSGPackSerializer, P2PContext, TensorDescriptor, deserialize_torch_tensor, nested_flatten, serialize_torch_tensor, ) from hivemind.moe.server.connection_handler import ConnectionHandler from hivemind.p2p.p2p_daemon import DEFAULT_MAX_MSG_SIZE from hivemind.proto import runtime_pb2 from hivemind.utils import as_aiter from hivemind.utils.asyncio import anext from hivemind.utils.streaming import split_for_streaming from src.data_structures import CHAIN_DELIMITER, ModuleUID from src.server.backend import TransformerBackend from src.utils.misc import DUMMY, is_dummy class TransformerConnectionHandler(ConnectionHandler): """Handles three request types: forward, backward and forward-incremental (inference)""" module_backends: Dict[ModuleUID, TransformerBackend] def __init__(self, dht: DHT, module_backends: Dict[str, TransformerBackend], inference_max_length: int): super().__init__(dht, module_backends) for module_backend in self.module_backends.values(): assert isinstance(module_backend, TransformerBackend) self.inference_max_length = inference_max_length async def rpc_inference( self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext, ) -> AsyncIterator[runtime_pb2.ExpertRequest]: """Compute a single step of inference using attention cache; update attention cache accordingly.""" try: print("OPENED RPC_INFERENCE") request = await anext(requests) requested_uids = self._check_uids(request.uid) metadata = MSGPackSerializer.loads(request.metadata) if request.metadata else {} requested_backends = tuple(self.module_backends[uid] for uid in requested_uids) max_length = metadata.get("max_length") if not requested_uids: raise ValueError("User must specify at least one block for inference, but got none") assert isinstance(max_length, int), f"rpc_inference metadata must contain int max_length, got {max_length}" if not 0 <= max_length <= self.inference_max_length: raise ValueError(f"Cannot allocate KV cache for {max_length} tokens, max = {self.inference_max_length}") batch_size = request.tensors[0].size[0] if request.tensors else 1 cache_metadata = torch.tensor( [[-1, -1] for _ in range(batch_size)], dtype=torch.int64 ) # [cache_handle, prefix_length] prefix_length = 0 async with self._allocate_caches(requested_backends, batch_size, max_length) as cache_handles: assert len(cache_handles) == len(requested_backends) while request.tensors: # iterate while user is willing to supply tensors hidden_states = [deserialize_torch_tensor(tensor) for tensor in request.tensors] length_increment = hidden_states[0].shape[1] # how many tokens are added this step (in each seq) if prefix_length + length_increment > max_length: raise ValueError( f"Maximum length exceeded: prefix {prefix_length} + current {length_increment}" f" exceeds pre-allocated maximum {max_length}" ) # Cast inputs to backend dtype hidden_states = [tensor.to(requested_backends[0].dtype) for tensor in hidden_states] # run request tensors through all requested modules, update caches for backend, cache_handle in zip(requested_backends, cache_handles): cache_metadata[:, 0], cache_metadata[:, 1] = cache_handle, prefix_length assert ( len(hidden_states) == 1 and hidden_states[0].ndim == 3 ), f"inputs to {type(backend)} must be a list with a single 3d tensor of hidden states" hidden_states = await backend.inference_pool.submit_task(cache_metadata, *hidden_states) assert isinstance(hidden_states, (list, tuple)) assert len(hidden_states) == 1 and hidden_states[0].ndim == 3 # serialize and send last layer outputs yield runtime_pb2.ExpertResponse( tensors=[ serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True) for result, proto in zip( hidden_states, nested_flatten(requested_backends[-1].outputs_schema) ) ] ) # prepare for next step prefix_length += hidden_states[0].shape[1] request = await (anext(requests)) finally: print("CLOSED RPC_INFERENCE") async def rpc_forward(self, request: runtime_pb2.ExpertRequest, context: P2PContext) -> runtime_pb2.ExpertResponse: # Parse request and prepare backends flat_inputs = [deserialize_torch_tensor(tensor) for tensor in request.tensors] requested_uids = self._check_uids(request.uid) requested_backends = tuple(self.module_backends[uid] for uid in requested_uids) hidden_states = await _rpc_forward(*flat_inputs, requested_backends=requested_backends) assert isinstance(hidden_states, torch.Tensor) and hidden_states.ndim == 3 # Serialize output and respond to client return runtime_pb2.ExpertResponse( tensors=[ serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True) for result, proto in zip((hidden_states,), nested_flatten(requested_backends[-1].outputs_schema)) ] ) async def rpc_forward_stream( self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext ) -> AsyncIterator[runtime_pb2.ExpertRequest]: # Parse requests and prepare backends uid_str, flat_inputs = await self._gather_inputs(requests, context) requested_uids = self._check_uids(uid_str) requested_backends = tuple(self.module_backends[uid] for uid in requested_uids) hidden_states = await _rpc_forward(*flat_inputs, requested_backends=requested_backends) assert isinstance(hidden_states, torch.Tensor) and hidden_states.ndim == 3, "hidden_states must be a 3d tensor" # Serialize the overall output serialized_output = [ serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True) for result, proto in zip((hidden_states,), nested_flatten(requested_backends[-1].outputs_schema)) ] # Split the serialized_output for streaming and respond to client output_split = [ part for tensor in serialized_output for part in split_for_streaming(tensor, DEFAULT_MAX_MSG_SIZE) ] async for part in as_aiter(*output_split): yield runtime_pb2.ExpertResponse(tensors=[part]) async def rpc_backward(self, request: runtime_pb2.ExpertRequest, context: P2PContext) -> runtime_pb2.ExpertResponse: # Parse requests and prepare backends flat_tensors = [deserialize_torch_tensor(tensor) for tensor in request.tensors] requested_uids = self._check_uids(request.uid) requested_backends = tuple(self.module_backends[uid] for uid in requested_uids) grads = await _rpc_backward(*flat_tensors, requested_backends=requested_backends) # Modify grad_inputs_schema to support grad_prompts assert len(requested_backends[0].args_schema) == 1 and len(grads) in (1, 2) # TODO generalize grad_inputs_schema_with_prompts = ( requested_backends[0].args_schema * len(grads), requested_backends[0].kwargs_schema, ) # TODO generalize # Serialize the overall grad_input and respond return runtime_pb2.ExpertResponse( tensors=[ serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True) for result, proto in zip(grads, nested_flatten(grad_inputs_schema_with_prompts)) ] ) async def rpc_backward_stream( self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext ) -> AsyncIterator[runtime_pb2.ExpertResponse]: uids_header, flat_tensors = await self._gather_inputs(requests, context) requested_uids = self._check_uids(uids_header) requested_backends = tuple(self.module_backends[uid] for uid in requested_uids) grads = await _rpc_backward(*flat_tensors, requested_backends=requested_backends) # Modify grad_inputs_schema to support grad_prompts assert len(requested_backends[0].args_schema) == 1 and len(grads) in (1, 2) # TODO generalize grad_inputs_schema_with_prompts = ( requested_backends[0].args_schema * len(grads), requested_backends[0].kwargs_schema, ) # TODO generalize # Serialize the overall grad_inputs serialized_grad_inputs = [ serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True) for result, proto in zip(grads, nested_flatten(grad_inputs_schema_with_prompts)) ] # Split the serialized_grad_inputs for streaming and respond output_split = [ part for tensor in serialized_grad_inputs for part in split_for_streaming(tensor, DEFAULT_MAX_MSG_SIZE) ] async for part in as_aiter(*output_split): yield runtime_pb2.ExpertResponse(tensors=[part]) def _check_uids(self, uids: str) -> Sequence[ModuleUID]: """Check that the first request to rpc_inference is valid""" uids = (uids or "").split(CHAIN_DELIMITER) if not uids: raise RuntimeError("User did not provide any uids") for uid in uids: if uid not in self.module_backends: raise RuntimeError(f"Remote peer does not serve {uid}") return tuple(uids) @contextlib.asynccontextmanager async def _allocate_caches( self, backends: Sequence[TransformerBackend], batch_size: int, max_length: int ) -> Sequence[int]: """Allocate memory caches for each transformer block, return cache handles""" async with contextlib.AsyncExitStack() as stack: handles = [] for backend in backends: num_heads = backend.module.self_attention.num_heads head_dim = backend.module.self_attention.head_dim cache_descriptor = TensorDescriptor( size=(2, batch_size, max_length, num_heads, head_dim), dtype=backend.dtype ) # [key_or_value, batch_size, max_length, num_heads, head_dim] handles.append(await stack.enter_async_context(backend.memory_cache.allocate_cache(cache_descriptor))) yield handles async def _rpc_forward(*flat_tensors: torch.Tensor, requested_backends: Sequence[TransformerBackend]) -> torch.Tensor: """ Run forward pass on deserialized inputs and prompts, used by rpc_forward and rpc_forward_stream :param flat_tensors: a list of tensors that includes first layer inputs, optional prompts and extra tensors :note: some input tensors can be missing, in which case they will be replaced with dummy tensors (see is_dummy) :param requested_backends: a sequence of transformer blocks in the same order as they appear in forward pass :returns: hidden states after the last layer [batch_size, seq_length, hid_size] """ hidden_states, *prompts = flat_tensors dtype = requested_backends[0].dtype # check parse input tensors and cast dtypes hidden_states = hidden_states.to(dtype) assert hidden_states.ndim == 3 if not prompts or is_dummy(prompts[0]): prompts = [DUMMY] * len(requested_backends) pre_seq_len = 0 else: prompts = [prompts[0].to(requested_backends[0].dtype)] prompts = [p.squeeze(0) for p in prompts[0].split(1)] pre_seq_len = prompts[0].shape[-2] # Run a chain of requested backends for backend, prompt in zip(requested_backends, prompts): if not is_dummy(prompt): hidden_states[:, :pre_seq_len] += prompt (hidden_states,) = await backend.forward_pool.submit_task(hidden_states) assert isinstance(hidden_states, torch.Tensor) assert ( hidden_states.ndim == 3 ), f"inputs to {type(backend)} must be a list with a single 3d tensor of hidden states" # Serialize the overall output return hidden_states async def _rpc_backward( *flat_tensors: torch.Tensor, requested_backends: Sequence[TransformerBackend] ) -> Union[torch.Tensor, Sequence[torch.Tensor]]: inputs, grad_outputs, *prompts = flat_tensors # Cast inputs & grad outputs to backend dtype inputs = inputs.to(requested_backends[0].dtype) grad_outputs = grad_outputs.to(requested_backends[-1].dtype) if not prompts or is_dummy(prompts[0]): prompts = [DUMMY] * len(requested_backends) pre_seq_len = 0 else: prompts = [prompts[0].to(requested_backends[0].dtype)] prompts = [p.squeeze(0) for p in prompts[0].split(1)] pre_seq_len = prompts[0].shape[-2] # Run a forward chain to collect intermediate inputs # Note that we do not forward for the last module since we do not need its output inter_inputs = [] for backend, prompt in zip(requested_backends[:-1], prompts[:-1]): assert inputs.ndim == 3, f"inputs to {type(backend)} must be a single 3d tensor of hidden states" if not is_dummy(prompt): inputs[:, :pre_seq_len] += prompt inter_inputs.append(inputs) (inputs,) = await backend.forward_pool.submit_task(inputs) assert isinstance(inputs, torch.Tensor) if not is_dummy(prompts[-1]): inputs[:, :pre_seq_len] += prompts[-1] inter_inputs.append(inputs) assert len(inter_inputs) == len(prompts) == len(requested_backends), "internal shape error during backward" grad_prompts_reversed = [] # Run a chain of requested backends for inp, prompt, backend in zip(*map(reversed, (inter_inputs, prompts, requested_backends))): (grad_outputs,) = await backend.backward_pool.submit_task(inp, grad_outputs) assert isinstance(grad_outputs, torch.Tensor) if not is_dummy(prompt): grad_prompts_reversed.append(grad_outputs[:, :pre_seq_len].unsqueeze(0)) grad_prompts = torch.cat(grad_prompts_reversed[::-1], dim=0) if grad_prompts_reversed else DUMMY return [grad_outputs] if is_dummy(grad_prompts) else [grad_outputs, grad_prompts] # TODO un-duct-tape