import random import pytest import torch from petals import AutoDistributedConfig, RemoteSequential from petals.server.block_functions import MAX_SHORT_INFERENCE_TOKENS from petals.server.from_pretrained import load_pretrained_block from test_utils import * @pytest.mark.forked def test_remote_block_with_cache_invalidation_exact_match(atol_forward=1e-4, atol_inference=1e-3): config = AutoDistributedConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS) remote_sequential = RemoteSequential(config) block_index = random.randint(0, config.num_hidden_layers - 1) remote_block = remote_sequential[block_index] inputs = torch.randn(1, MAX_SHORT_INFERENCE_TOKENS - 50, config.hidden_size) short_inputs = torch.randn(1, MAX_SHORT_INFERENCE_TOKENS - 50, config.hidden_size) short_inputs[:, :2, :] = inputs[:, :2, :] initial_outputs_inference = None secondary_outputs_inference = None with torch.inference_mode(): with remote_block.inference_session(max_length=inputs.shape[1]) as sess: initial_outputs_inference = sess.step(inputs) sess.position = 2 secondary_outputs_inference = sess.step(short_inputs[:, 2:, :]) result = torch.cat([initial_outputs_inference[:, :2, :], secondary_outputs_inference], dim=1) ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32) (outputs_local,) = ref_block(short_inputs) assert torch.allclose(outputs_local, result, rtol=0, atol=atol_inference)