from __future__ import annotations import contextlib import logging import random from typing import Optional, Union import torch from hivemind import DHT, P2P, get_logger, use_hivemind_log_handler from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker from hivemind.moe.expert_uid import ExpertInfo from torch import nn import src from src.client.remote_block import RemoteTransformerBlock from src.client.sequence_manager import RemoteSequenceManager from src.data_structures import UID_DELIMITER from src.dht_utils import _create_remote_modules_from_infos use_hivemind_log_handler("in_root_logger") logger = get_logger(__file__) class RemoteSequential(nn.Module): """ A sequence of transformer blocks hosted by the swarm. """ def __init__( self, config: src.DistributedBloomConfig, dht: DHT, prefix: str, max_retries: int = 3, p2p: Optional[P2P] = None, sequence_manager: Optional[RemoteSequenceManager] = None, ): logger.warning(f"{self.__class__.__name__} is in active development; expect adventures") if prefix.endswith(UID_DELIMITER): logger.warning( f"dht_prefix {prefix} already ends with '{UID_DELIMITER}'." f"This will cause {self.__class__.__name__} to look for modules under " f"{prefix}{UID_DELIMITER}*. Please make sure this is what you intended." ) super().__init__() self.config = config self.dht = dht self.prefix = prefix self.max_retries = max_retries self.p2p = RemoteExpertWorker.run_coroutine(dht.replicate_p2p()) if p2p is None else p2p block_uids = [f"{prefix}{UID_DELIMITER}{i}" for i in range(config.n_layer)] if sequence_manager is None: logger.debug(f"Creating new sequence manager for block uids: {block_uids}") self.sequence_manager = RemoteSequenceManager(dht, block_uids) self.is_subsequence = False else: assert isinstance(sequence_manager.block_uids, list) logger.debug(f"Reusing sequence manager with {len(self.sequence_manager)}") self.is_subsequence = self.sequence_manager.block_uids == block_uids def forward(self, inputs: torch.Tensor): assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3 and inputs.shape[-1] == self.config.n_embed for block_index in range(self.config.n_layer): for retry_index in range(self.max_retries): try: block = self[block_index] (outputs,) = block(inputs) assert isinstance(outputs, torch.Tensor) assert outputs.shape == inputs.shape, f"Expected {block} output {inputs.shape}, got {outputs.shape}" inputs = outputs break except Exception as e: if retry_index == self.max_retries - 1: raise e else: logging.debug(f"Caught {e} when running forward for block {block_index}", exc_info=True) return inputs def __getitem__(self, ix: Union[int, slice]) -> Union[RemoteTransformerBlock, RemoteSequential]: assert isinstance(ix, (int, slice)) if isinstance(ix, int): assert 0 <= ix < self.config.n_layer (module,) = _create_remote_modules_from_infos([self.sequence_manager.block_infos[ix]], self.p2p) return module else: return RemoteSequential( self.config, self.dht, prefix=self.prefix, max_retries=self.max_retries, p2p=self.p2p, sequence_manager=self.sequence_manager[ix], ) def __iter__(self): for block_index in range(self.config.n_layer): yield self[block_index] def __len__(self): return len(self.sequence_manager) def inference_session(self) -> RemoteSequentialInferenceSession: self.sequence_manager.update_() return RemoteSequentialInferenceSession(self.sequence_manager, self.p2p) class RemoteSequentialInferenceSession: """An interface to a multi-step *inference* session for a sequence of remote transformer blocks""" def __init__(self, remote_sequence_info: RemoteSequenceManager, p2p: P2P): self.remote_sequence_info = remote_sequence_info self.p2p = p2p self.closed = False self.stack = contextlib.ExitStack() self.active_sessions = [] def __enter__(self): assert not self.closed self.stack.__enter__() # TODO(yozh) replace this code with a fault-tolerant chain that can be reconstructed if some peers fail current_block = 0 while current_block != len(self.remote_sequence_info): candidate_spans = self.remote_sequence_info.spans_containing_block[current_block] chosen_span = random.choice(candidate_spans) # TODO this is a temporary code assert chosen_span.start <= current_block < chosen_span.end # TODO begin throwaway prototype code remote = RemoteTransformerBlock(self.remote_sequence_info.block_infos[current_block], self.p2p) _ = remote.info # TODO fix span_uids = self.remote_sequence_info.block_uids[current_block : chosen_span.end] remote._info = ExpertInfo(" ".join(span_uids), chosen_span.peer_id) self.active_sessions.append(remote.inference_session()) self.stack.enter_context(self.active_sessions[-1]) current_block = chosen_span.end # TODO end throwaway prototype code return self def step(self, inputs: torch.Tensor): assert not self.closed for session in self.active_sessions: outputs = session.step(inputs) assert outputs.shape == inputs.shape, f"expected {inputs.shape}, got {outputs.shape}" inputs = outputs return inputs def close(self, *exc_details): """Finish a given inference session, close the underlying connection""" if not self.closed: self.stack.__exit__(*exc_details or (None, None, None)) self.active_sessions.clear() self.closed = True def __exit__(self, *exc_details): self.close(*exc_details) def __del__(self): self.close()