import logging from functools import partial from typing import Optional, Tuple import torch from hivemind import DHT, get_logger, use_hivemind_log_handler from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker from torch import nn from src import DistributedBloomConfig from src.data_structures import UID_DELIMITER, RemoteModuleInfo from src.dht_utils import _create_remote_modules_from_infos, _get_remote_module_infos use_hivemind_log_handler("in_root_logger") logger = get_logger(__file__) class RemoteSequential(nn.Sequential): """ A sequence of transformer blocks hosted by the swarm. """ def __init__(self, config: DistributedBloomConfig, dht: DHT, prefix: str, max_retries: int = 3): logger.warning(f"{self.__class__.__name__} is in active development; expect adventures") if prefix.endswith(UID_DELIMITER): logger.warning( f"dht_prefix {prefix} already ends with '{UID_DELIMITER}'." f"This will cause {self.__class__.__name__} to look for modules under " f"{prefix}{UID_DELIMITER}*. Please make sure this is what you intended." ) super().__init__() self.config = config self.dht = dht self.p2p = RemoteExpertWorker.run_coroutine(dht.replicate_p2p()) self.prefix = prefix self.block_uids = tuple(f"{prefix}{UID_DELIMITER}{i}" for i in range(config.n_layer)) logger.debug(f"Remote block uids: {self.block_uids}") self.block_infos: Tuple[RemoteModuleInfo, ...] = tuple( dht.run_coroutine( partial(_get_remote_module_infos, uids=self.block_uids, expiration_time=float("inf")), return_future=False, ) ) self.max_retries = max_retries assert len(self.block_infos) == len(self.block_uids) for uid, info in zip(self.block_uids, self.block_infos): assert isinstance(info, (type(None), RemoteModuleInfo)), f"Unexpected dht entry for {uid}: {info}" assert info is not None, f"Found no active peers for block {uid}" assert isinstance(info.peer_ids, set), f"expected peer_ids to be a set, got {info.peer_ids}" assert info.uid == uid, f"The DHT entry for {uid} actually points to {info.uid}" assert len(info.peer_ids) > 0, f"Found no active peers for block {uid}" def forward(self, inputs: torch.Tensor): assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3 and inputs.shape[-1] == self.config.n_embed for block_index in range(self.config.n_layer): for retry_index in range(self.max_retries): try: block = self[block_index] (outputs,) = block(inputs) assert isinstance(outputs, torch.Tensor) assert outputs.shape == inputs.shape, f"Expected {block} output {inputs.shape}, got {outputs.shape}" inputs = outputs break except Exception as e: if retry_index == self.max_retries - 1: raise e else: logging.debug(f"Caught {e} when running forward for block {block_index}", exc_info=True) return inputs def __getitem__(self, block_index: int): assert 0 <= block_index < self.config.n_layer (module,) = _create_remote_modules_from_infos([self.block_infos[block_index]], self.p2p) return module def __iter__(self): for block_index in range(self.config.n_layer): yield self[block_index]