|
@@ -0,0 +1,97 @@
|
|
|
+######
|
|
|
+# Warning:torch this test is a work in progress. It will be modified soon.
|
|
|
+# - if you want more stable tests, see test_block_exact_match
|
|
|
+# - if you want to figure out chained inference, ask yozh
|
|
|
+
|
|
|
+import os
|
|
|
+
|
|
|
+import hivemind
|
|
|
+import torch
|
|
|
+import transformers
|
|
|
+from hivemind.moe.expert_uid import ExpertInfo, UID_DELIMITER
|
|
|
+
|
|
|
+from src.bloom.from_pretrained import load_pretrained_block
|
|
|
+from src.client.remote_block import RemoteTransformerBlock
|
|
|
+from src.dht_utils import get_remote_module
|
|
|
+
|
|
|
+INITIAL_PEERS = os.environ.get("INITIAL_PEERS")
|
|
|
+if not INITIAL_PEERS:
|
|
|
+ raise RuntimeError("Must specify INITIAL_PEERS environment variable with one or more peer ids")
|
|
|
+INITIAL_PEERS = INITIAL_PEERS.split()
|
|
|
+
|
|
|
+
|
|
|
+MODEL_NAME = os.environ.get("MODEL_NAME")
|
|
|
+if not MODEL_NAME:
|
|
|
+ raise RuntimeError("Must specify MODEL_NAME as a name of a model to be tested")
|
|
|
+
|
|
|
+REF_NAME = os.environ.get("REF_NAME", "bigscience/test-bloomd-6b3")
|
|
|
+
|
|
|
+
|
|
|
+def test_forward_backward_exact_match(atol_forward=1e-4, atol_backward=1e-4, seq_length=1):
|
|
|
+ dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
|
|
|
+ config = transformers.AutoConfig.from_pretrained(MODEL_NAME)
|
|
|
+ remote_block = get_remote_module(dht, f"{MODEL_NAME}{UID_DELIMITER}0")
|
|
|
+ assert remote_block is not None, f"Could not find {MODEL_NAME}{UID_DELIMITER}0 in DHT"
|
|
|
+ assert isinstance(remote_block, RemoteTransformerBlock)
|
|
|
+
|
|
|
+ _ = remote_block.info # lazy-init info now, because otherwise we will _break_ info init by chaning _info
|
|
|
+ remote_block._info = ExpertInfo(f"{MODEL_NAME}.3 {MODEL_NAME}.4 {MODEL_NAME}.5", remote_block._info.peer_id)
|
|
|
+
|
|
|
+ ref_blocks = [
|
|
|
+ load_pretrained_block(REF_NAME, 3, torch_dtype=torch.float32),
|
|
|
+ load_pretrained_block(REF_NAME, 4, torch_dtype=torch.float32),
|
|
|
+ load_pretrained_block(REF_NAME, 5, torch_dtype=torch.float32),
|
|
|
+ ]
|
|
|
+ inputs = torch.randn(1, seq_length, config.hidden_size, requires_grad=True)
|
|
|
+ outputs_rpc = remote_block.forward(inputs)[0]
|
|
|
+ outputs_rpc.sum().backward()
|
|
|
+ grads_rpc = inputs.grad
|
|
|
+
|
|
|
+ inputs.grad = None
|
|
|
+ hidden_states = inputs
|
|
|
+ for ref_block in ref_blocks:
|
|
|
+ hidden_states = ref_block.forward(hidden_states)[0]
|
|
|
+ outputs_ref = hidden_states
|
|
|
+ outputs_ref.sum().backward()
|
|
|
+ grads_ref = inputs.grad
|
|
|
+
|
|
|
+ assert torch.allclose(outputs_ref, outputs_rpc, rtol=0, atol=atol_forward)
|
|
|
+ assert torch.allclose(grads_ref, grads_rpc, rtol=0, atol=atol_backward)
|
|
|
+
|
|
|
+
|
|
|
+def test_chained_inference_exact_match(atol_inference=1e-4):
|
|
|
+ dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
|
|
|
+ config = transformers.AutoConfig.from_pretrained(MODEL_NAME)
|
|
|
+ remote_block = get_remote_module(dht, f"{MODEL_NAME}{UID_DELIMITER}0")
|
|
|
+ assert remote_block is not None, f"Could not find {MODEL_NAME}{UID_DELIMITER}0 in DHT"
|
|
|
+ assert isinstance(remote_block, RemoteTransformerBlock)
|
|
|
+
|
|
|
+ _ = remote_block.info # lazy-init info now, because otherwise we will _break_ info init by chaning _info
|
|
|
+ remote_block._info = ExpertInfo(f"{MODEL_NAME}.3 {MODEL_NAME}.4", remote_block._info.peer_id)
|
|
|
+
|
|
|
+ inputs = torch.randn(1, 8, config.hidden_size)
|
|
|
+
|
|
|
+ outputs_inference = []
|
|
|
+ with remote_block.inference_session() as sess:
|
|
|
+ for i in range(inputs.shape[1]):
|
|
|
+ outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
|
|
|
+ outputs_inference = torch.cat(outputs_inference, dim=1)
|
|
|
+
|
|
|
+ ref_blocks = [
|
|
|
+ load_pretrained_block(REF_NAME, 3, torch_dtype=torch.float32),
|
|
|
+ load_pretrained_block(REF_NAME, 4, torch_dtype=torch.float32),
|
|
|
+ ]
|
|
|
+ outputs_ref = []
|
|
|
+ caches = [None, None]
|
|
|
+ for i in range(inputs.shape[1]):
|
|
|
+ new_caches = []
|
|
|
+ hidden_states = inputs[:, i : i + 1, :]
|
|
|
+ for ref_block, cache in zip(ref_blocks, caches):
|
|
|
+ with torch.no_grad():
|
|
|
+ hidden_states, new_cache = ref_block.forward(hidden_states, use_cache=True, layer_past=cache)
|
|
|
+ new_caches.append(new_cache)
|
|
|
+
|
|
|
+ outputs_ref.append(hidden_states)
|
|
|
+ caches = new_caches
|
|
|
+ outputs_ref = torch.cat(outputs_ref, dim=1)
|
|
|
+ assert torch.allclose(outputs_ref, outputs_inference, rtol=0, atol=atol_inference)
|