|
@@ -0,0 +1,134 @@
|
|
|
+from __future__ import annotations
|
|
|
+
|
|
|
+import contextlib
|
|
|
+import logging
|
|
|
+import random
|
|
|
+
|
|
|
+import torch
|
|
|
+from hivemind import DHT, P2P, get_logger, use_hivemind_log_handler
|
|
|
+from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker
|
|
|
+from hivemind.moe.expert_uid import ExpertInfo
|
|
|
+from torch import nn
|
|
|
+
|
|
|
+from src import DistributedBloomConfig, RemoteTransformerBlock
|
|
|
+from src.client.remote_sequence_info import RemoteSequenceInfo
|
|
|
+from src.data_structures import UID_DELIMITER
|
|
|
+from src.dht_utils import _create_remote_modules_from_infos
|
|
|
+
|
|
|
+
|
|
|
+use_hivemind_log_handler("in_root_logger")
|
|
|
+logger = get_logger(__file__)
|
|
|
+
|
|
|
+
|
|
|
+class RemoteSequential(nn.Module):
|
|
|
+ """
|
|
|
+ A sequence of transformer blocks hosted by the swarm.
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self, config: DistributedBloomConfig, dht: DHT, prefix: str, max_retries: int = 3):
|
|
|
+ logger.warning(f"{self.__class__.__name__} is in active development; expect adventures")
|
|
|
+ if prefix.endswith(UID_DELIMITER):
|
|
|
+ logger.warning(
|
|
|
+ f"dht_prefix {prefix} already ends with '{UID_DELIMITER}'."
|
|
|
+ f"This will cause {self.__class__.__name__} to look for modules under "
|
|
|
+ f"{prefix}{UID_DELIMITER}*. Please make sure this is what you intended."
|
|
|
+ )
|
|
|
+
|
|
|
+ super().__init__()
|
|
|
+ self.config = config
|
|
|
+ self.dht = dht
|
|
|
+ self.prefix = prefix
|
|
|
+ self.max_retries = max_retries
|
|
|
+ self.p2p = RemoteExpertWorker.run_coroutine(dht.replicate_p2p())
|
|
|
+
|
|
|
+ block_uids = tuple(f"{prefix}{UID_DELIMITER}{i}" for i in range(config.n_layer))
|
|
|
+ logger.debug(f"Remote block uids: {block_uids}")
|
|
|
+ self.remote_sequence_info = RemoteSequenceInfo(dht, block_uids)
|
|
|
+
|
|
|
+ def forward(self, inputs: torch.Tensor):
|
|
|
+ assert isinstance(inputs, torch.Tensor) and inputs.ndim == 3 and inputs.shape[-1] == self.config.n_embed
|
|
|
+ for block_index in range(self.config.n_layer):
|
|
|
+ for retry_index in range(self.max_retries):
|
|
|
+ try:
|
|
|
+ block = self[block_index]
|
|
|
+ (outputs,) = block(inputs)
|
|
|
+ assert isinstance(outputs, torch.Tensor)
|
|
|
+ assert outputs.shape == inputs.shape, f"Expected {block} output {inputs.shape}, got {outputs.shape}"
|
|
|
+ inputs = outputs
|
|
|
+ break
|
|
|
+ except Exception as e:
|
|
|
+ if retry_index == self.max_retries - 1:
|
|
|
+ raise e
|
|
|
+ else:
|
|
|
+ logging.debug(f"Caught {e} when running forward for block {block_index}", exc_info=True)
|
|
|
+ return inputs
|
|
|
+
|
|
|
+ def __getitem__(self, block_index: int):
|
|
|
+ assert 0 <= block_index < self.config.n_layer
|
|
|
+ (module,) = _create_remote_modules_from_infos([self.remote_sequence_info.block_infos[block_index]], self.p2p)
|
|
|
+ return module
|
|
|
+
|
|
|
+ def __iter__(self):
|
|
|
+ for block_index in range(self.config.n_layer):
|
|
|
+ yield self[block_index]
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return len(self.remote_sequence_info)
|
|
|
+
|
|
|
+ def inference_session(self) -> RemoteSequentialInferenceSession:
|
|
|
+ self.remote_sequence_info.update_()
|
|
|
+ return RemoteSequentialInferenceSession(self.remote_sequence_info, self.p2p)
|
|
|
+
|
|
|
+
|
|
|
+class RemoteSequentialInferenceSession:
|
|
|
+ """An interface to a multi-step *inference* session for a sequence of remote transformer blocks"""
|
|
|
+
|
|
|
+ def __init__(self, remote_sequence_info: RemoteSequenceInfo, p2p: P2P):
|
|
|
+ self.remote_sequence_info = remote_sequence_info
|
|
|
+ self.p2p = p2p
|
|
|
+ self.closed = False
|
|
|
+ self.stack = contextlib.ExitStack()
|
|
|
+ self.active_sessions = []
|
|
|
+
|
|
|
+ def __enter__(self):
|
|
|
+ assert not self.closed
|
|
|
+ self.stack.__enter__()
|
|
|
+ # TODO(yozh) replace this code with a fault-tolerant chain that can be reconstructed if some peers fail
|
|
|
+ current_block = 0
|
|
|
+ while current_block != len(self.remote_sequence_info):
|
|
|
+ candidate_spans = self.remote_sequence_info.spans_containing_block[current_block]
|
|
|
+ chosen_span = random.choice(candidate_spans) # TODO this is a temporary code
|
|
|
+ assert chosen_span.start <= current_block < chosen_span.end
|
|
|
+
|
|
|
+ # TODO begin throwaway prototype code
|
|
|
+ remote = RemoteTransformerBlock(self.remote_sequence_info.block_infos[current_block], self.p2p)
|
|
|
+ _=remote.info #TODO fix
|
|
|
+ span_uids = self.remote_sequence_info.block_uids[current_block: chosen_span.end]
|
|
|
+ remote._info = ExpertInfo(" ".join(span_uids), chosen_span.peer_id)
|
|
|
+ self.active_sessions.append(remote.inference_session())
|
|
|
+ self.stack.enter_context(self.active_sessions[-1])
|
|
|
+ current_block = chosen_span.end
|
|
|
+ # TODO end throwaway prototype code
|
|
|
+
|
|
|
+ return self
|
|
|
+
|
|
|
+ def step(self, inputs: torch.Tensor):
|
|
|
+ assert not self.closed
|
|
|
+ for session in self.active_sessions:
|
|
|
+ outputs = session.step(inputs)
|
|
|
+ assert outputs.shape == inputs.shape, f"expected {inputs.shape}, got {outputs.shape}"
|
|
|
+ inputs = outputs
|
|
|
+ return inputs
|
|
|
+
|
|
|
+ def close(self, *exc_details):
|
|
|
+ """Finish a given inference session, close the underlying connection"""
|
|
|
+ if not self.closed:
|
|
|
+ self.stack.__exit__(*exc_details or (None, None, None))
|
|
|
+ self.active_sessions.clear()
|
|
|
+ self.closed = True
|
|
|
+
|
|
|
+ def __exit__(self, *exc_details):
|
|
|
+ self.close(*exc_details)
|
|
|
+
|
|
|
+ def __del__(self):
|
|
|
+ self.close()
|