Răsfoiți Sursa

add preliminary 8bit backward

dbaranchuk 3 ani în urmă
părinte
comite
d0ea74dc5a
2 a modificat fișierele cu 231 adăugiri și 1 ștergeri
  1. 1 1
      src/server/server.py
  2. 230 0
      src/utils/tmp_convert_8bit.py

+ 1 - 1
src/server/server.py

@@ -22,7 +22,7 @@ from src.server.block_selection import choose_best_blocks
 from src.server.cache import MemoryCache
 from src.server.handler import TransformerConnectionHandler
 from src.server.throughput import get_host_throughput
-from src.utils.convert_8bit import replace_8bit_linear
+from src.utils.tmp_convert_8bit import replace_8bit_linear
 
 use_hivemind_log_handler("in_root_logger")
 logger = get_logger(__file__)

+ 230 - 0
src/utils/tmp_convert_8bit.py

@@ -0,0 +1,230 @@
+# This file contains a temporary solution for int8 backward until the new 'bitsandbytes' release will come.
+# To be removed
+
+import operator
+from functools import reduce  # Required in Python 3
+
+import bitsandbytes as bnb
+import bitsandbytes.functional as F
+import torch
+
+
+def replace_8bit_linear(model, threshold=6.0):
+    """
+    A helper function to replace all `torch.nn.Linear` modules by `bnb.nn.Linear8bit` modules from the `bitsandbytes`
+    library. This will enable running your models using mixed int8 precision as described by the paper `GPT3.int8():
+    8-bit Matrix Multiplication for Transformers at Scale`. Make sure `bitsandbytes` compiled with the correct CUDA
+    version of your hardware is installed before running this function. `pip install -i https://test.pypi.org/simple/
+    bitsandbytes-cudaXXX` with `XXX` is your CUDA version (e.g., 11.6 = 116)
+    The function will be run recursively and replace all `torch.nn.Linear` modules except for the `lm_head` that should
+    be kept as a `torch.nn.Linear` module. The replacement is done under `init_empty_weights` context manager so no
+    CPU/GPU memory is required to run this function.
+    Parameters:
+        model (`torch.nn.Module`):
+            Input model or `torch.nn.Module` as the function is run recursively.
+        threshold (`float`, *optional*):
+            `int8_threshold` for outlier detection as described in the formentioned paper. This parameters is set to
+            `6.0` as described by the paper.
+    """
+    for n, module in model.named_children():
+        if len(list(module.children())) > 0:
+            replace_8bit_linear(module, threshold)
+
+        if isinstance(module, torch.nn.Linear) and n != ["lm_head", "score"]:
+            model._modules[n] = Linear8bitLtFor8bitBackward(
+                module.in_features,
+                module.out_features,
+                module.bias is not None,
+                has_fp16_weights=False,
+                threshold=threshold,
+            ).to(model._modules[n].weight.device)
+    return model
+
+
+class Linear8bitLtFor8bitBackward(bnb.nn.Linear8bitLt):
+    def forward(self, x):
+        self.state.is_training = self.training
+
+        if self.weight.CB is not None:
+            self.init_8bit_state()
+
+        out = matmul(x, self.weight, state=self.state)
+
+        if self.bias is not None:
+            out += self.bias.unsqueeze(0).expand_as(out)
+
+        if not self.state.has_fp16_weights and self.state.CB is not None:
+            # we converted 8-bit row major to turing/ampere format in the first inference pass
+            # we no longer need the row-major weight
+            del self.state.CB
+            self.weight.data = self.state.CxB
+
+        return out
+
+
+# math.prod not compatible with python < 3.8
+def prod(iterable):
+    return reduce(operator.mul, iterable, 1)
+
+
+class MatMul8bitLt(torch.autograd.Function):
+    @staticmethod
+    def forward(ctx, A, B, out=None, state=bnb.autograd._functions.MatmulLtState()):
+        # default to pytorch behavior if inputs are empty
+        ctx.is_empty = False
+        if prod(A.shape) == 0:
+            ctx.is_empty = True
+            ctx.A = A
+            ctx.B = B
+            if A.shape[-1] == B.shape[0]:
+                return torch.empty(A.shape[:-1] + B.shape[1:], dtype=torch.float16, device=A.device)
+            else:
+                return torch.empty(A.shape[:-1] + B.shape[:1], dtype=torch.float16, device=A.device)
+
+        # 1. Quantize A
+        # 2. Quantize B
+        # 3. Matmul
+        # 4. Mixed-precision decomposition matmul
+        # 5. Save state
+        requires_gradA = A.requires_grad
+        requires_gradB = B.requires_grad
+        formatB = state.formatB
+        input_shape = A.shape
+        if state.outlier_pool is None:
+            state.outlier_pool = bnb.autograd._functions.GlobalOutlierPooler.get_instance()
+        assert A.dtype == torch.float16, f"The input data type needs to be fp16 but {A.dtype} was found!"
+
+        # 1. Quantize A
+        if len(A.shape) == 3:
+            A = A.view(-1, A.shape[-1]).contiguous()
+        CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A, threshold=state.threshold)
+
+        if state.threshold > 0.0 and coo_tensorA is not None:
+            if state.has_fp16_weights:
+                idx = torch.unique(coo_tensorA.colidx).long()
+                CA[:, idx] = 0
+                CAt[:, idx] = 0
+                subA = A[:, idx]
+                state.subB = B[:, idx].t().contiguous()
+                state.idx = idx
+            else:
+                if state.CxB is None:
+                    # B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
+                    # we also need to convert it to the turing/ampere format
+                    state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
+        else:
+            if not state.has_fp16_weights and state.CxB is None:
+                state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
+            subA = None
+
+        # 2. Quantize B
+        if state.has_fp16_weights:
+            has_grad = True if (getattr(B, "grad", None) is not None) else False
+            is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1)
+            if is_transposed:
+                B = B.contiguous()
+
+            if (state.is_training and not has_grad) or state.CxB is None:
+                state.reset_grads()
+                (
+                    CB,
+                    state.CBt,
+                    state.SCB,
+                    state.SCBt,
+                    coo_tensorB,
+                ) = F.double_quant(B)
+                state.CxB, state.SB = F.transform(CB, to_order=formatB)
+        else:
+            has_grad = False
+
+        if coo_tensorA is not None and not state.has_fp16_weights:
+            # extract outliers
+
+            outlier_idx = torch.unique(coo_tensorA.colidx)
+            state.idx = outlier_idx
+            outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int())
+            state.subB = (outliers * state.SCB.view(-1, 1) / 127.0).t().contiguous().half()
+            CA[:, state.idx.long()] = 0
+            CAt[:, state.idx.long()] = 0
+            subA = A[:, state.idx.long()]
+
+        shapeB = state.SB[0]
+
+        if len(input_shape) == 3:
+            output_shape = (input_shape[0], input_shape[1], shapeB[0])
+        else:
+            output_shape = (input_shape[0], shapeB[0])
+
+        # 3. Matmul
+        C32A, SA = F.transform(CA, "col32")
+        out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
+        output = F.mm_dequant(out32, Sout32, SCA, state.SCB)
+
+        # 4. Mixed-precision decomposition matmul
+        if coo_tensorA is not None and subA is not None:
+            output += torch.matmul(subA, state.subB)
+
+        # 5. Save state
+        ctx.state = state
+
+        ctx.formatB = formatB
+        ctx.grad_shape = input_shape
+        ctx.req_grads = [requires_gradA, requires_gradB]
+
+        if requires_gradA or requires_gradB:
+            ctx.tensors = (CAt, subA)
+            ctx.tensor_states = (SCAt, state.idx)
+        else:
+            ctx.tensors = [None, None]
+            ctx.tensor_states = (None, None)
+            ctx.save_for_backward(None, None)
+
+        # clone_func = torch.clone if len(output_shape) == 3 else lambda x : x
+        clone_func = torch.clone
+        return clone_func(output.view(output_shape))
+
+    @staticmethod
+    def backward(ctx, grad_output):
+        if ctx.is_empty:
+            return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, None
+        req_gradA, req_gradB = ctx.req_grads
+        CAt, subA = ctx.tensors
+        SCAt, idx = ctx.tensor_states
+        formatB = ctx.formatB
+        state = ctx.state
+
+        if len(grad_output.shape) == 3:
+            grad_output = grad_output.view(-1, grad_output.shape[-1]).contiguous()
+
+        grad_A = grad_B = None
+
+        Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output)
+        if req_gradB:
+            CxAt, SAt = F.transform(CAt, formatB, transpose=True)
+            C32grad, Sgrad = F.transform(Cgradt, "col32", transpose=True)
+            gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt)
+            grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt)
+            if state.threshold > 0.0 and subA is not None:
+                grad_B[:, idx] += torch.matmul(grad_output.t(), subA)
+
+        if req_gradA:
+            C32grad, Sgrad = F.transform(Cgrad, "col32")
+            if state.CxBt is None:
+                state.CxBt, state.SBt = F.transform(state.CBt, to_order=formatB, transpose=True)
+            gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
+            grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape)
+
+        return grad_A, grad_B, None, None
+
+
+def matmul(
+    A: torch.Tensor,
+    B: torch.Tensor,
+    out: torch.Tensor = None,
+    state: bnb.autograd._functions.MatmulLtState = None,
+    threshold=0.0,
+):
+    state = state or bnb.autograd._functions.MatmulLtState()
+    if threshold > 0.0:
+        state.threshold = threshold
+    return MatMul8bitLt.apply(A, B, out, state)