|
@@ -1,111 +0,0 @@
|
|
|
-"""
|
|
|
-PyTorch BLOOM model that implements several memory-efficient modes.
|
|
|
-Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
|
|
|
-See commit history for authorship.
|
|
|
-"""
|
|
|
-from typing import Tuple, Union, Optional
|
|
|
-
|
|
|
-import torch
|
|
|
-import torch.utils.checkpoint
|
|
|
-from torch import nn
|
|
|
-
|
|
|
-from src.bloom.model import BloomModel
|
|
|
-use_hivemind_log_handler("in_root_logger")
|
|
|
-logger = logging.get_logger(__file__)
|
|
|
-
|
|
|
-
|
|
|
-class PrefixEncoder(torch.nn.Module):
|
|
|
- r'''
|
|
|
- The torch.nn model to encode the prefix
|
|
|
- Input shape: (batch-size, prefix-length)
|
|
|
- Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
|
|
- '''
|
|
|
- def __init__(self, config):
|
|
|
- super().__init__()
|
|
|
- self.prefix_projection = False
|
|
|
- self.embedding = nn.Embedding(config.pre_seq_len, config.num_hidden_layers * 2 * config.hidden_size)
|
|
|
-
|
|
|
- def forward(self, prefix: torch.Tensor):
|
|
|
- if self.prefix_projection:
|
|
|
- prefix_tokens = self.embedding(prefix)
|
|
|
- past_key_values = self.trans(prefix_tokens)
|
|
|
- else:
|
|
|
- past_key_values = self.embedding(prefix)
|
|
|
- return past_key_values
|
|
|
-
|
|
|
-
|
|
|
-class BloomPrefixV2(BloomModel):
|
|
|
- """DistributedBloomModel with prefix tokens for prompt tuning"""
|
|
|
-
|
|
|
- def __init__(self, config):
|
|
|
- super().__init__(config)
|
|
|
- assert config.pre_seq_len > 0, "The number of prefix tokens must be > 0"
|
|
|
- assert config.prompt_tuning_mode == 'deep'
|
|
|
-
|
|
|
- self.pre_seq_len = config.pre_seq_len
|
|
|
- self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
|
|
-
|
|
|
- self.prefix_encoder = PrefixEncoder(config)
|
|
|
- self.hidden_size = config.hidden_size
|
|
|
- # self.dropout = torch.nn.Dropout(0.0)
|
|
|
-
|
|
|
- def get_prompt(self, batch_size):
|
|
|
- prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.device)
|
|
|
- past_key_values = self.prefix_encoder(prefix_tokens)
|
|
|
-
|
|
|
- # bsz, seqlen, _ = past_key_values.shape
|
|
|
- past_key_values = past_key_values.view(
|
|
|
- batch_size,
|
|
|
- self.pre_seq_len,
|
|
|
- len(self.h) * 2,
|
|
|
- self.n_head,
|
|
|
- self.hidden_size // self.n_head
|
|
|
- )
|
|
|
- # past_key_values = self.dropout(past_key_values)
|
|
|
- past_key_values = past_key_values.permute([2, 0, 1, 3, 4]).split(2)
|
|
|
- return past_key_values
|
|
|
-
|
|
|
- def forward(
|
|
|
- self,
|
|
|
- input_ids: Optional[torch.LongTensor],
|
|
|
- inputs_embeds: Optional[torch.Tensor],
|
|
|
- attention_mask: Optional[torch.Tensor],
|
|
|
- past_key_values=None,
|
|
|
- position_ids=None,
|
|
|
- head_mask=None,
|
|
|
- use_cache=None,
|
|
|
- output_attentions=None,
|
|
|
- output_hidden_states=None,
|
|
|
- return_dict=None,
|
|
|
- ):
|
|
|
- assert (
|
|
|
- input_ids is None or inputs_embeds is None
|
|
|
- ), "You cannot specify both input_ids and inputs_embeds at the same time"
|
|
|
- assert input_ids is not None or inputs_embeds is not None, "You must specify either input_ids or inputs_embeds"
|
|
|
-
|
|
|
- if position_ids is not None:
|
|
|
- logger.warning("position_ids are ignored in this bloom implementation")
|
|
|
-
|
|
|
- if inputs_embeds is None:
|
|
|
- inputs_embeds = self.word_embeddings(input_ids)
|
|
|
-
|
|
|
- batch_size = inputs_embeds.shape[0]
|
|
|
-
|
|
|
- if attention_mask is not None:
|
|
|
- prefix_attention_mask = torch.ones(batch_size, self.prefix_length, device=attention_mask.device)
|
|
|
- attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
|
|
-
|
|
|
- past_key_values = self.get_prompt(batch_size=batch_size)
|
|
|
-
|
|
|
- transformer_outputs = super().forward(
|
|
|
- inputs_embeds=inputs_embeds,
|
|
|
- attention_mask=attention_mask,
|
|
|
- past_key_values=past_key_values,
|
|
|
- head_mask=head_mask,
|
|
|
- use_cache=use_cache,
|
|
|
- output_attentions=output_attentions,
|
|
|
- output_hidden_states=output_hidden_states,
|
|
|
- return_dict=return_dict
|
|
|
- )
|
|
|
- return transformer_outputs
|
|
|
-
|