Răsfoiți Sursa

Delete ptune_v2_model.py

Dmitry Baranchuk 3 ani în urmă
părinte
comite
c6c064abc4
1 a modificat fișierele cu 0 adăugiri și 111 ștergeri
  1. 0 111
      src/bloom/ptune_v2_model.py

+ 0 - 111
src/bloom/ptune_v2_model.py

@@ -1,111 +0,0 @@
-"""
-PyTorch BLOOM model that implements several memory-efficient modes.
-Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
-See commit history for authorship.
-"""
-from typing import Tuple, Union, Optional
-
-import torch
-import torch.utils.checkpoint
-from torch import nn
-
-from src.bloom.model import BloomModel
-use_hivemind_log_handler("in_root_logger")
-logger = logging.get_logger(__file__)
-
-
-class PrefixEncoder(torch.nn.Module):
-    r'''
-    The torch.nn model to encode the prefix
-    Input shape: (batch-size, prefix-length)
-    Output shape: (batch-size, prefix-length, 2*layers*hidden)
-    '''
-    def __init__(self, config):
-        super().__init__()
-        self.prefix_projection = False
-        self.embedding = nn.Embedding(config.pre_seq_len, config.num_hidden_layers * 2 * config.hidden_size)
-
-    def forward(self, prefix: torch.Tensor):
-        if self.prefix_projection:
-            prefix_tokens = self.embedding(prefix)
-            past_key_values = self.trans(prefix_tokens)
-        else:
-            past_key_values = self.embedding(prefix)
-        return past_key_values
-
-
-class BloomPrefixV2(BloomModel):
-    """DistributedBloomModel with prefix tokens for prompt tuning"""
-
-    def __init__(self, config):
-        super().__init__(config)
-        assert config.pre_seq_len > 0, "The number of prefix tokens must be > 0"
-        assert config.prompt_tuning_mode == 'deep'
-
-        self.pre_seq_len = config.pre_seq_len
-        self.prefix_tokens = torch.arange(self.pre_seq_len).long()
-        
-        self.prefix_encoder = PrefixEncoder(config)
-        self.hidden_size = config.hidden_size 
-        # self.dropout = torch.nn.Dropout(0.0)
-
-    def get_prompt(self, batch_size):
-        prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.device)
-        past_key_values = self.prefix_encoder(prefix_tokens)
-        
-        # bsz, seqlen, _ = past_key_values.shape
-        past_key_values = past_key_values.view(
-            batch_size,
-            self.pre_seq_len,
-            len(self.h) * 2, 
-            self.n_head,
-            self.hidden_size // self.n_head
-        )
-        # past_key_values = self.dropout(past_key_values)
-        past_key_values = past_key_values.permute([2, 0, 1, 3, 4]).split(2)
-        return past_key_values
-
-    def forward(
-        self,
-        input_ids: Optional[torch.LongTensor],
-        inputs_embeds: Optional[torch.Tensor],
-        attention_mask: Optional[torch.Tensor],
-        past_key_values=None,
-        position_ids=None,
-        head_mask=None,
-        use_cache=None,
-        output_attentions=None,
-        output_hidden_states=None,
-        return_dict=None,
-    ):
-        assert (
-            input_ids is None or inputs_embeds is None
-        ), "You cannot specify both input_ids and inputs_embeds at the same time"
-        assert input_ids is not None or inputs_embeds is not None, "You must specify either input_ids or inputs_embeds"
-
-        if position_ids is not None:
-            logger.warning("position_ids are ignored in this bloom implementation")
-
-        if inputs_embeds is None:
-            inputs_embeds = self.word_embeddings(input_ids)
-
-        batch_size = inputs_embeds.shape[0]
-
-        if attention_mask is not None:
-            prefix_attention_mask = torch.ones(batch_size, self.prefix_length, device=attention_mask.device)
-            attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
-
-        past_key_values = self.get_prompt(batch_size=batch_size)
-
-        transformer_outputs = super().forward(
-            inputs_embeds=inputs_embeds, 
-            attention_mask=attention_mask,
-            past_key_values=past_key_values,
-            head_mask=head_mask, 
-            use_cache=use_cache,
-            output_attentions=output_attentions,
-            output_hidden_states=output_hidden_states,
-            return_dict=return_dict
-        )
-        return transformer_outputs
-