|
@@ -84,7 +84,13 @@ class _ServerInferenceSession:
|
|
break # this message means "done sending"
|
|
break # this message means "done sending"
|
|
|
|
|
|
def step(
|
|
def step(
|
|
- self, inputs: torch.Tensor, prompts: torch.Tensor, hypo_ids: torch.LongTensor, *, step_id: str
|
|
|
|
|
|
+ self,
|
|
|
|
+ inputs: torch.Tensor,
|
|
|
|
+ prompts: torch.Tensor,
|
|
|
|
+ hypo_ids: torch.LongTensor,
|
|
|
|
+ *,
|
|
|
|
+ step_id: str,
|
|
|
|
+ start_from_position: int,
|
|
) -> torch.Tensor:
|
|
) -> torch.Tensor:
|
|
"""
|
|
"""
|
|
Inference step: send a chunk of input tensors and receive a chunk of outputs
|
|
Inference step: send a chunk of input tensors and receive a chunk of outputs
|
|
@@ -94,6 +100,12 @@ class _ServerInferenceSession:
|
|
if self.closed:
|
|
if self.closed:
|
|
raise Exception("Session is closed, cannot perform step")
|
|
raise Exception("Session is closed, cannot perform step")
|
|
|
|
|
|
|
|
+ if start_from_position is not None:
|
|
|
|
+ assert start_from_position <= self._position
|
|
|
|
+ self._position = start_from_position
|
|
|
|
+ if self.history is not None and self.history.shape[1] >= start_from_position:
|
|
|
|
+ self.history = self.history[:, :start_from_position, :] if start_from_position > 0 else None
|
|
|
|
+
|
|
n_input_tokens = inputs.shape[1]
|
|
n_input_tokens = inputs.shape[1]
|
|
if self.history is None:
|
|
if self.history is None:
|
|
self.history = inputs
|
|
self.history = inputs
|
|
@@ -115,6 +127,8 @@ class _ServerInferenceSession:
|
|
request_metadata = dict(session_id=self.session_id, step_id=step_id)
|
|
request_metadata = dict(session_id=self.session_id, step_id=step_id)
|
|
if not self.stepped:
|
|
if not self.stepped:
|
|
request_metadata.update(self.session_metadata)
|
|
request_metadata.update(self.session_metadata)
|
|
|
|
+ if start_from_position is not None:
|
|
|
|
+ request_metadata["start_from_position"] = start_from_position
|
|
elif self.config.use_server_to_server:
|
|
elif self.config.use_server_to_server:
|
|
next_servers = self._collect_next_servers()
|
|
next_servers = self._collect_next_servers()
|
|
if next_servers:
|
|
if next_servers:
|
|
@@ -257,8 +271,16 @@ class InferenceSession:
|
|
return self
|
|
return self
|
|
|
|
|
|
def step(
|
|
def step(
|
|
- self, inputs: torch.Tensor, prompts: Optional[torch.Tensor] = None, hypo_ids: Optional[torch.Tensor] = None
|
|
|
|
|
|
+ self,
|
|
|
|
+ inputs: torch.Tensor,
|
|
|
|
+ prompts: Optional[torch.Tensor] = None,
|
|
|
|
+ hypo_ids: Optional[torch.Tensor] = None,
|
|
|
|
+ start_from_position: Optional[int] = None,
|
|
) -> torch.Tensor:
|
|
) -> torch.Tensor:
|
|
|
|
+
|
|
|
|
+ if start_from_position is not None:
|
|
|
|
+ self._position = start_from_position
|
|
|
|
+
|
|
assert not self._closed
|
|
assert not self._closed
|
|
if torch.is_grad_enabled():
|
|
if torch.is_grad_enabled():
|
|
logger.warning("Running inference session with grad enabled. Gradients will *not* be propagated correctly.")
|
|
logger.warning("Running inference session with grad enabled. Gradients will *not* be propagated correctly.")
|
|
@@ -303,7 +325,11 @@ class InferenceSession:
|
|
|
|
|
|
server_session = self._server_sessions[server_idx]
|
|
server_session = self._server_sessions[server_idx]
|
|
inputs = server_session.step(
|
|
inputs = server_session.step(
|
|
- inputs, prompts[server_session.span.start : server_session.span.end], hypo_ids, step_id=step_id
|
|
|
|
|
|
+ inputs,
|
|
|
|
+ prompts[server_session.span.start : server_session.span.end],
|
|
|
|
+ hypo_ids,
|
|
|
|
+ step_id=step_id,
|
|
|
|
+ start_from_position=start_from_position,
|
|
)
|
|
)
|
|
|
|
|
|
server_idx += 1
|
|
server_idx += 1
|