|
@@ -1,12 +1,15 @@
|
|
|
# Note: this code is being actively modified by justheuristic. If you want to change anything about it, please warn me.
|
|
|
import os
|
|
|
+import random
|
|
|
|
|
|
import hivemind
|
|
|
+import pytest
|
|
|
import torch
|
|
|
import transformers
|
|
|
|
|
|
from src.bloom.from_pretrained import load_pretrained_block
|
|
|
from src.client.remote_block import RemoteTransformerBlock
|
|
|
+from src.data_structures import UID_DELIMITER
|
|
|
from src.dht_utils import get_remote_module
|
|
|
|
|
|
INITIAL_PEERS = os.environ.get("INITIAL_PEERS")
|
|
@@ -14,34 +17,32 @@ if not INITIAL_PEERS:
|
|
|
raise RuntimeError("Must specify INITIAL_PEERS environment variable with one or more peer ids")
|
|
|
INITIAL_PEERS = INITIAL_PEERS.split()
|
|
|
|
|
|
-
|
|
|
-BLOCK_UID = os.environ.get("BLOCK_UID")
|
|
|
-if not BLOCK_UID:
|
|
|
- raise RuntimeError("Must specify BLOCK_UID as an index of a transformer block to be tested")
|
|
|
-
|
|
|
-REF_NAME = os.environ.get("REF_NAME", "bigscience/test-bloomd-6b3")
|
|
|
-REF_INDEX = int(os.environ.get("REF_INDEX", BLOCK_UID.split(".")[-1]))
|
|
|
+MODEL_NAME = os.environ.get("MODEL_NAME")
|
|
|
+if not MODEL_NAME:
|
|
|
+ raise RuntimeError("Must specify MODEL_NAME as a name of a model to be tested")
|
|
|
|
|
|
|
|
|
def test_remote_block_exact_match(atol_forward=1e-5, atol_inference=1e-3):
|
|
|
dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
|
|
|
+ config = transformers.AutoConfig.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
- remote_block = get_remote_module(dht, BLOCK_UID)
|
|
|
- assert remote_block is not None, f"Could not find {BLOCK_UID} in DHT"
|
|
|
- assert isinstance(remote_block, RemoteTransformerBlock)
|
|
|
- ref_config = transformers.AutoConfig.from_pretrained(REF_NAME)
|
|
|
+ for block_index in random.sample(range(config.n_layer), 3):
|
|
|
+ block_uid = f"{MODEL_NAME}{UID_DELIMITER}{block_index}"
|
|
|
+ remote_block = get_remote_module(dht, block_uid)
|
|
|
+ assert remote_block is not None, f"Could not find {block_uid} in DHT"
|
|
|
+ assert isinstance(remote_block, RemoteTransformerBlock)
|
|
|
|
|
|
- inputs = torch.randn(1, 8, ref_config.hidden_size)
|
|
|
- (outputs_forward,) = remote_block(inputs)
|
|
|
+ inputs = torch.randn(1, 8, config.hidden_size)
|
|
|
+ (outputs_forward,) = remote_block(inputs)
|
|
|
|
|
|
- outputs_inference = []
|
|
|
- with remote_block.inference_session() as sess:
|
|
|
- for i in range(inputs.shape[1]):
|
|
|
- outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
|
|
|
- outputs_inference = torch.cat(outputs_inference, dim=1)
|
|
|
+ outputs_inference = []
|
|
|
+ with remote_block.inference_session() as sess:
|
|
|
+ for i in range(inputs.shape[1]):
|
|
|
+ outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
|
|
|
+ outputs_inference = torch.cat(outputs_inference, dim=1)
|
|
|
|
|
|
- ref_block = load_pretrained_block(REF_NAME, REF_INDEX, torch_dtype=torch.float32)
|
|
|
- (outputs_local,) = ref_block(inputs)
|
|
|
+ ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32)
|
|
|
+ (outputs_local,) = ref_block(inputs)
|
|
|
|
|
|
- assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward)
|
|
|
- assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)
|
|
|
+ assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward)
|
|
|
+ assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)
|