|
@@ -1,595 +0,0 @@
|
|
-"""
|
|
|
|
-PyTorch BLOOM model that implements several memory-efficient modes.
|
|
|
|
-Based on https://github.com/huggingface/transformers/commit/ca2a55e9dfb245527b5e1c954fec6ffbb7aef07b
|
|
|
|
-See commit history for authorship.
|
|
|
|
-"""
|
|
|
|
-from typing import Optional, Tuple, Union
|
|
|
|
-
|
|
|
|
-import torch
|
|
|
|
-import torch.nn.functional as F
|
|
|
|
-import torch.utils.checkpoint
|
|
|
|
-from hivemind import use_hivemind_log_handler
|
|
|
|
-from torch import nn
|
|
|
|
-from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
|
|
|
-from transformers.file_utils import (
|
|
|
|
- add_code_sample_docstrings,
|
|
|
|
- add_start_docstrings,
|
|
|
|
- add_start_docstrings_to_model_forward,
|
|
|
|
-)
|
|
|
|
-from transformers.modeling_outputs import (
|
|
|
|
- BaseModelOutputWithPastAndCrossAttentions,
|
|
|
|
- CausalLMOutputWithCrossAttentions,
|
|
|
|
- SequenceClassifierOutputWithPast,
|
|
|
|
-)
|
|
|
|
-from transformers.models.bloom.configuration_bloom import BloomConfig
|
|
|
|
-from transformers.models.bloom.modeling_bloom import BloomPreTrainedModel
|
|
|
|
-from transformers.utils import logging
|
|
|
|
-
|
|
|
|
-from petals.bloom.block import BloomBlock
|
|
|
|
-
|
|
|
|
-use_hivemind_log_handler("in_root_logger")
|
|
|
|
-logger = logging.get_logger(__file__)
|
|
|
|
-
|
|
|
|
-_CHECKPOINT_FOR_DOC = "bigscience/Bloom"
|
|
|
|
-_CONFIG_FOR_DOC = "BloomConfig"
|
|
|
|
-_TOKENIZER_FOR_DOC = "BloomTokenizer"
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-BLOOM_START_DOCSTRING = r"""
|
|
|
|
-
|
|
|
|
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
|
|
- library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
|
|
|
-
|
|
|
|
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
|
|
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
|
|
- and behavior.
|
|
|
|
-
|
|
|
|
- Parameters:
|
|
|
|
- config ([`MemoryEfficientBloomConfig`]): Model configuration class with all the parameters of the model.
|
|
|
|
- Initializing with a config file does not load the weights associated with the model, only the
|
|
|
|
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
|
|
-"""
|
|
|
|
-
|
|
|
|
-BLOOM_INPUTS_DOCSTRING = r"""
|
|
|
|
- Args:
|
|
|
|
- input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
|
|
|
- `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
|
|
|
- `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
|
|
|
- sequence tokens in the vocabulary.
|
|
|
|
-
|
|
|
|
- If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
|
|
|
- `input_ids`.
|
|
|
|
-
|
|
|
|
- Indices can be obtained using [`BloomTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
|
|
- [`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
-
|
|
|
|
- [What are input IDs?](../glossary#input-ids)
|
|
|
|
- past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
|
|
|
- Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
|
|
|
- `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
|
|
|
- their past given to this model should not be passed as `input_ids` as they have already been computed.
|
|
|
|
- attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
-
|
|
|
|
- - 1 for tokens that are **not masked**,
|
|
|
|
- - 0 for tokens that are **masked**.
|
|
|
|
-
|
|
|
|
- [What are attention masks?](../glossary#attention-mask)
|
|
|
|
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
|
|
- config.max_position_embeddings - 1]`.
|
|
|
|
-
|
|
|
|
- [What are position IDs?](../glossary#position-ids)
|
|
|
|
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
|
|
|
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
-
|
|
|
|
- - 1 indicates the head is **not masked**,
|
|
|
|
- - 0 indicates the head is **masked**.
|
|
|
|
-
|
|
|
|
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
|
|
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
|
|
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
|
|
- model's internal embedding lookup matrix.
|
|
|
|
-
|
|
|
|
- If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
|
|
|
- `past_key_values`).
|
|
|
|
- use_cache (`bool`, *optional*):
|
|
|
|
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
|
|
- `past_key_values`).
|
|
|
|
- output_attentions (`bool`, *optional*):
|
|
|
|
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
|
|
- tensors for more detail.
|
|
|
|
- output_hidden_states (`bool`, *optional*):
|
|
|
|
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
|
|
- more detail.
|
|
|
|
- return_dict (`bool`, *optional*):
|
|
|
|
- Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
|
|
|
-"""
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-class _BloomPreTrainedModelWithModifiedDefaults(BloomPreTrainedModel):
|
|
|
|
- @classmethod
|
|
|
|
- def from_pretrained(cls, *args, low_cpu_mem_usage: Optional[bool] = None, **kwargs):
|
|
|
|
- if low_cpu_mem_usage is None:
|
|
|
|
- low_cpu_mem_usage = True
|
|
|
|
- return super().from_pretrained(*args, low_cpu_mem_usage=low_cpu_mem_usage, **kwargs)
|
|
|
|
-
|
|
|
|
- from_pretrained.__doc__ = BloomPreTrainedModel.from_pretrained.__doc__.replace(
|
|
|
|
- "low_cpu_mem_usage(`bool`, *optional*)",
|
|
|
|
- "low_cpu_mem_usage(`bool`, *optional*, defaults to `True` in Petals)",
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-@add_start_docstrings(
|
|
|
|
- "The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
|
|
|
|
- BLOOM_START_DOCSTRING,
|
|
|
|
-)
|
|
|
|
-class BloomModel(_BloomPreTrainedModelWithModifiedDefaults):
|
|
|
|
- def __init__(self, config):
|
|
|
|
- super().__init__(config)
|
|
|
|
- assert not config.slow_but_exact, "slow_but_exact mode was removed for code simplicity"
|
|
|
|
-
|
|
|
|
- self.embed_dim = config.hidden_size
|
|
|
|
- self.n_head = config.n_head
|
|
|
|
-
|
|
|
|
- # Embedding + LN Embedding
|
|
|
|
- self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
|
|
|
- self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
-
|
|
|
|
- # Transformer blocks
|
|
|
|
- self.h = nn.ModuleList([BloomBlock(config, layer_number=i) for i in range(config.num_hidden_layers)])
|
|
|
|
-
|
|
|
|
- # Final Layer Norm
|
|
|
|
- self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
-
|
|
|
|
- self.gradient_checkpointing = False
|
|
|
|
-
|
|
|
|
- # Initialize weights and apply final processing
|
|
|
|
- self.post_init()
|
|
|
|
-
|
|
|
|
- def get_input_embeddings(self):
|
|
|
|
- return self.word_embeddings
|
|
|
|
-
|
|
|
|
- def set_input_embeddings(self, new_embeddings):
|
|
|
|
- self.word_embeddings = new_embeddings
|
|
|
|
-
|
|
|
|
- @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
|
|
|
- @add_code_sample_docstrings(
|
|
|
|
- processor_class=_TOKENIZER_FOR_DOC,
|
|
|
|
- checkpoint=_CHECKPOINT_FOR_DOC,
|
|
|
|
- output_type=BaseModelOutputWithPastAndCrossAttentions,
|
|
|
|
- config_class=_CONFIG_FOR_DOC,
|
|
|
|
- )
|
|
|
|
- def forward(
|
|
|
|
- self,
|
|
|
|
- input_ids=None,
|
|
|
|
- past_key_values=None,
|
|
|
|
- attention_mask=None,
|
|
|
|
- position_ids=None,
|
|
|
|
- head_mask=None,
|
|
|
|
- inputs_embeds=None,
|
|
|
|
- use_cache=None,
|
|
|
|
- output_attentions=None,
|
|
|
|
- output_hidden_states=None,
|
|
|
|
- return_dict=None,
|
|
|
|
- ):
|
|
|
|
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
- output_hidden_states = (
|
|
|
|
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
- )
|
|
|
|
- use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
-
|
|
|
|
- if input_ids is not None and inputs_embeds is not None:
|
|
|
|
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
|
|
- if position_ids is not None:
|
|
|
|
- logger.warning("position_ids are ignored in this bloom implementation")
|
|
|
|
- elif input_ids is not None:
|
|
|
|
- input_shape = input_ids.size()
|
|
|
|
- input_ids = input_ids.view(-1, input_shape[-1])
|
|
|
|
- elif inputs_embeds is not None:
|
|
|
|
- input_shape = inputs_embeds.size()[:-1]
|
|
|
|
- else:
|
|
|
|
- raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
-
|
|
|
|
- if past_key_values is None:
|
|
|
|
- past_key_values = tuple([None] * len(self.h))
|
|
|
|
-
|
|
|
|
- # Prepare head mask if needed
|
|
|
|
- # 1.0 in head_mask indicate we keep the head
|
|
|
|
- # attention_probs has shape bsz x n_head x N x N
|
|
|
|
- # head_mask has shape n_layer x batch x n_head x N x N
|
|
|
|
- head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
|
|
|
-
|
|
|
|
- if inputs_embeds is None:
|
|
|
|
- inputs_embeds = self.word_embeddings(input_ids)
|
|
|
|
-
|
|
|
|
- # Note: it supports only float32 or bfloat16 inputs
|
|
|
|
- hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
|
|
|
-
|
|
|
|
- output_shape = input_shape + (hidden_states.size(-1),)
|
|
|
|
-
|
|
|
|
- presents = () if use_cache else None
|
|
|
|
- all_self_attentions = () if output_attentions else None
|
|
|
|
- all_hidden_states = () if output_hidden_states else None
|
|
|
|
-
|
|
|
|
- # Compute alibi tensor: check build_alibi_tensor documentation
|
|
|
|
- current_sequence_length = hidden_states.shape[1]
|
|
|
|
- if past_key_values and past_key_values[0]:
|
|
|
|
- current_sequence_length += past_key_values[0][0].shape[1]
|
|
|
|
-
|
|
|
|
- for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
|
|
-
|
|
|
|
- if output_hidden_states:
|
|
|
|
- all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
-
|
|
|
|
- if self.gradient_checkpointing and self.training:
|
|
|
|
-
|
|
|
|
- if use_cache:
|
|
|
|
- logger.warning(
|
|
|
|
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
|
|
- )
|
|
|
|
- use_cache = False
|
|
|
|
-
|
|
|
|
- def create_custom_forward(module):
|
|
|
|
- def custom_forward(*inputs):
|
|
|
|
- # None for past_key_value
|
|
|
|
- return module(*inputs, use_cache, output_attentions, alibi=None)
|
|
|
|
-
|
|
|
|
- return custom_forward
|
|
|
|
-
|
|
|
|
- outputs = torch.utils.checkpoint.checkpoint(
|
|
|
|
- create_custom_forward(block),
|
|
|
|
- hidden_states,
|
|
|
|
- None,
|
|
|
|
- attention_mask,
|
|
|
|
- head_mask[i],
|
|
|
|
- )
|
|
|
|
- else:
|
|
|
|
- outputs = block(
|
|
|
|
- hidden_states,
|
|
|
|
- layer_past=layer_past,
|
|
|
|
- attention_mask=attention_mask,
|
|
|
|
- head_mask=head_mask[i],
|
|
|
|
- use_cache=use_cache,
|
|
|
|
- output_attentions=output_attentions,
|
|
|
|
- alibi=None,
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
- hidden_states = outputs[0]
|
|
|
|
- if use_cache is True:
|
|
|
|
- presents = presents + (outputs[1],)
|
|
|
|
-
|
|
|
|
- if output_attentions:
|
|
|
|
- all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
|
|
|
-
|
|
|
|
- # Add last hidden state
|
|
|
|
- hidden_states = self.ln_f(hidden_states)
|
|
|
|
-
|
|
|
|
- if output_hidden_states:
|
|
|
|
- all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
-
|
|
|
|
- hidden_states = hidden_states.view(output_shape)
|
|
|
|
-
|
|
|
|
- if not return_dict:
|
|
|
|
- return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
|
|
|
-
|
|
|
|
- return BaseModelOutputWithPastAndCrossAttentions(
|
|
|
|
- last_hidden_state=hidden_states,
|
|
|
|
- past_key_values=presents,
|
|
|
|
- hidden_states=all_hidden_states,
|
|
|
|
- attentions=all_self_attentions,
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-@add_start_docstrings(
|
|
|
|
- """
|
|
|
|
- The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
|
|
|
- embeddings).
|
|
|
|
- """,
|
|
|
|
- BLOOM_START_DOCSTRING,
|
|
|
|
-)
|
|
|
|
-class BloomForCausalLM(_BloomPreTrainedModelWithModifiedDefaults):
|
|
|
|
- _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
|
|
|
-
|
|
|
|
- def __init__(self, config):
|
|
|
|
- super().__init__(config)
|
|
|
|
- self.transformer = BloomModel(config)
|
|
|
|
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
-
|
|
|
|
- # Initialize weights and apply final processing
|
|
|
|
- self.post_init()
|
|
|
|
-
|
|
|
|
- def get_output_embeddings(self):
|
|
|
|
- return self.lm_head
|
|
|
|
-
|
|
|
|
- def set_output_embeddings(self, new_embeddings):
|
|
|
|
- self.lm_head = new_embeddings
|
|
|
|
-
|
|
|
|
- def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
|
|
|
- # only last token for inputs_ids if past is defined in kwargs
|
|
|
|
- if past:
|
|
|
|
- input_ids = input_ids[:, -1].unsqueeze(-1)
|
|
|
|
-
|
|
|
|
- attention_mask = kwargs.get("attention_mask", None)
|
|
|
|
- position_ids = kwargs.get("position_ids", None)
|
|
|
|
-
|
|
|
|
- if attention_mask is not None and position_ids is None:
|
|
|
|
- # create position_ids on the fly for batch generation
|
|
|
|
- position_ids = attention_mask.long().cumsum(-1) - 1
|
|
|
|
- position_ids.masked_fill_(attention_mask == 0, 1)
|
|
|
|
- if past:
|
|
|
|
- position_ids = position_ids[:, -1].unsqueeze(-1)
|
|
|
|
- else:
|
|
|
|
- position_ids = None
|
|
|
|
- return {
|
|
|
|
- "input_ids": input_ids,
|
|
|
|
- "past_key_values": past,
|
|
|
|
- "use_cache": kwargs.get("use_cache"),
|
|
|
|
- "position_ids": position_ids,
|
|
|
|
- "attention_mask": attention_mask,
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
|
|
|
- @add_code_sample_docstrings(
|
|
|
|
- processor_class=_TOKENIZER_FOR_DOC,
|
|
|
|
- checkpoint=_CHECKPOINT_FOR_DOC,
|
|
|
|
- output_type=CausalLMOutputWithCrossAttentions,
|
|
|
|
- config_class=_CONFIG_FOR_DOC,
|
|
|
|
- )
|
|
|
|
- def forward(
|
|
|
|
- self,
|
|
|
|
- input_ids=None,
|
|
|
|
- past_key_values=None,
|
|
|
|
- attention_mask=None,
|
|
|
|
- position_ids=None,
|
|
|
|
- head_mask=None,
|
|
|
|
- inputs_embeds=None,
|
|
|
|
- labels=None,
|
|
|
|
- use_cache=None,
|
|
|
|
- output_attentions=None,
|
|
|
|
- output_hidden_states=None,
|
|
|
|
- return_dict=None,
|
|
|
|
- ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
|
|
|
- r"""
|
|
|
|
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
|
|
|
- `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
|
|
|
- are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
|
|
|
- """
|
|
|
|
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
-
|
|
|
|
- transformer_outputs = self.transformer(
|
|
|
|
- input_ids,
|
|
|
|
- past_key_values=past_key_values,
|
|
|
|
- attention_mask=attention_mask,
|
|
|
|
- position_ids=position_ids,
|
|
|
|
- head_mask=head_mask,
|
|
|
|
- inputs_embeds=inputs_embeds,
|
|
|
|
- use_cache=use_cache,
|
|
|
|
- output_attentions=output_attentions,
|
|
|
|
- output_hidden_states=output_hidden_states,
|
|
|
|
- return_dict=return_dict,
|
|
|
|
- )
|
|
|
|
- hidden_states = transformer_outputs[0]
|
|
|
|
-
|
|
|
|
- lm_logits = self.lm_head(hidden_states)
|
|
|
|
-
|
|
|
|
- loss = None
|
|
|
|
- if labels is not None:
|
|
|
|
- # Shift so that tokens < n predict n
|
|
|
|
- shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
|
|
- shift_labels = labels[..., 1:].contiguous()
|
|
|
|
- # Flatten the tokens
|
|
|
|
- loss_fct = CrossEntropyLoss()
|
|
|
|
- loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
|
|
|
-
|
|
|
|
- if not return_dict:
|
|
|
|
- output = (lm_logits,) + transformer_outputs[1:]
|
|
|
|
- return ((loss,) + output) if loss is not None else output
|
|
|
|
-
|
|
|
|
- return CausalLMOutputWithCrossAttentions(
|
|
|
|
- loss=loss,
|
|
|
|
- logits=lm_logits,
|
|
|
|
- past_key_values=transformer_outputs.past_key_values,
|
|
|
|
- hidden_states=transformer_outputs.hidden_states,
|
|
|
|
- attentions=transformer_outputs.attentions,
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
- @staticmethod
|
|
|
|
- def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
|
|
|
- """
|
|
|
|
- This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
|
|
|
- [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
|
|
|
- beam_idx at every generation step.
|
|
|
|
- """
|
|
|
|
- return tuple(
|
|
|
|
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
|
|
|
- for layer_past in past
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-@add_start_docstrings(
|
|
|
|
- """
|
|
|
|
- The modified language modeling head which does not create extra tensor for the linear layer with weights tied to the input
|
|
|
|
- embeddings. Thus, it reduces initial memory consumption which might be crucial for large dictionaries.
|
|
|
|
- In addition, it provides an effcient way to deal with half-precision word embeddings on CPU.
|
|
|
|
- """,
|
|
|
|
- BLOOM_START_DOCSTRING,
|
|
|
|
-)
|
|
|
|
-class LMHead(nn.Module):
|
|
|
|
- def __init__(self, config, word_embeddings: nn.Embedding):
|
|
|
|
- super().__init__()
|
|
|
|
- self.word_embeddings = word_embeddings
|
|
|
|
- self.chunk_size = config.chunk_size_for_efficient_fp16_on_cpu
|
|
|
|
-
|
|
|
|
- @property
|
|
|
|
- def in_features(self) -> int:
|
|
|
|
- return self.word_embeddings.num_embeddings
|
|
|
|
-
|
|
|
|
- @property
|
|
|
|
- def out_features(self) -> int:
|
|
|
|
- return self.word_embeddings.embedding_dim
|
|
|
|
-
|
|
|
|
- @property
|
|
|
|
- def weight(self):
|
|
|
|
- return self.word_embeddings.weight
|
|
|
|
-
|
|
|
|
- @property
|
|
|
|
- def bias(self):
|
|
|
|
- return None
|
|
|
|
-
|
|
|
|
- def forward(self, hidden_states):
|
|
|
|
- word_embeddings = self.word_embeddings.weight
|
|
|
|
-
|
|
|
|
- # We use 'chunked_forward' only when embeddings are in half-precision on CPU.
|
|
|
|
- if word_embeddings.dtype in [torch.float16, torch.bfloat16] and word_embeddings.device.type == "cpu":
|
|
|
|
- lm_logits = self.chunked_forward(hidden_states)
|
|
|
|
- else:
|
|
|
|
- # Switch dtype in case word_embeddings are fp16/bf16
|
|
|
|
- hidden_states = hidden_states.to(word_embeddings.dtype)
|
|
|
|
- lm_logits = F.linear(hidden_states, word_embeddings)
|
|
|
|
- return lm_logits
|
|
|
|
-
|
|
|
|
- def chunked_forward(self, hidden_states):
|
|
|
|
- """Splits word embeddings on chunks and iteratively casts them into fp32 to perform matmul more efficiently on CPU.
|
|
|
|
- chunk_size: provides trade-off between efficiency and extra memory consumption.
|
|
|
|
- """
|
|
|
|
- assert self.chunk_size > 0, "Chunk size for chunked forward must be positive"
|
|
|
|
-
|
|
|
|
- word_embeddings = self.word_embeddings.weight
|
|
|
|
- num_embeddings = self.word_embeddings.num_embeddings
|
|
|
|
-
|
|
|
|
- hidden_states = hidden_states.float()
|
|
|
|
- output = torch.zeros(*hidden_states.shape[:-1], num_embeddings)
|
|
|
|
-
|
|
|
|
- for i in range(0, num_embeddings, self.chunk_size):
|
|
|
|
- chunk = word_embeddings[i : i + self.chunk_size].float()
|
|
|
|
- output[..., i : i + self.chunk_size] = F.linear(hidden_states, chunk)
|
|
|
|
- return output
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-@add_start_docstrings(
|
|
|
|
- """
|
|
|
|
- The Bloom Model transformer with a sequence classification head on top (linear layer).
|
|
|
|
- [`BloomForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
|
|
|
- (e.g. GPT-1) do.
|
|
|
|
- Since it does classification on the last token, it requires to know the position of the last token. If a
|
|
|
|
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
|
|
|
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
|
|
|
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
|
|
|
- each row of the batch).
|
|
|
|
- """,
|
|
|
|
- BLOOM_START_DOCSTRING,
|
|
|
|
-)
|
|
|
|
-class BloomForSequenceClassification(_BloomPreTrainedModelWithModifiedDefaults):
|
|
|
|
- _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
|
|
|
-
|
|
|
|
- def __init__(self, config):
|
|
|
|
- super().__init__(config)
|
|
|
|
- self.num_labels = config.num_labels
|
|
|
|
- self.transformer = BloomModel(config)
|
|
|
|
- self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
|
|
|
-
|
|
|
|
- # Initialize weights and apply final processing
|
|
|
|
- self.post_init()
|
|
|
|
-
|
|
|
|
- @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
|
|
|
- @add_code_sample_docstrings(
|
|
|
|
- processor_class=_TOKENIZER_FOR_DOC,
|
|
|
|
- checkpoint=_CHECKPOINT_FOR_DOC,
|
|
|
|
- output_type=SequenceClassifierOutputWithPast,
|
|
|
|
- config_class=_CONFIG_FOR_DOC,
|
|
|
|
- )
|
|
|
|
- def forward(
|
|
|
|
- self,
|
|
|
|
- input_ids=None,
|
|
|
|
- past_key_values=None,
|
|
|
|
- attention_mask=None,
|
|
|
|
- position_ids=None,
|
|
|
|
- head_mask=None,
|
|
|
|
- inputs_embeds=None,
|
|
|
|
- labels=None,
|
|
|
|
- use_cache=None,
|
|
|
|
- output_attentions=None,
|
|
|
|
- output_hidden_states=None,
|
|
|
|
- return_dict=None,
|
|
|
|
- ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
|
|
|
- r"""
|
|
|
|
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
|
|
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
|
|
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
|
|
- """
|
|
|
|
-
|
|
|
|
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
-
|
|
|
|
- transformer_outputs = self.transformer(
|
|
|
|
- input_ids,
|
|
|
|
- past_key_values=past_key_values,
|
|
|
|
- attention_mask=attention_mask,
|
|
|
|
- position_ids=position_ids,
|
|
|
|
- head_mask=head_mask,
|
|
|
|
- inputs_embeds=inputs_embeds,
|
|
|
|
- use_cache=use_cache,
|
|
|
|
- output_attentions=output_attentions,
|
|
|
|
- output_hidden_states=output_hidden_states,
|
|
|
|
- return_dict=return_dict,
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
- hidden_states = transformer_outputs[0]
|
|
|
|
- logits = self.score(hidden_states)
|
|
|
|
-
|
|
|
|
- if input_ids is not None:
|
|
|
|
- batch_size = input_ids.shape[0]
|
|
|
|
- else:
|
|
|
|
- batch_size = inputs_embeds.shape[0]
|
|
|
|
-
|
|
|
|
- if self.config.pad_token_id is None and batch_size != 1:
|
|
|
|
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
|
|
- if self.config.pad_token_id is None:
|
|
|
|
- sequence_lengths = -1
|
|
|
|
- else:
|
|
|
|
- if input_ids is not None:
|
|
|
|
- sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
|
|
|
- else:
|
|
|
|
- sequence_lengths = -1
|
|
|
|
- logger.warning(
|
|
|
|
- f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
|
|
|
- "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
- loss = None
|
|
|
|
- if labels is not None:
|
|
|
|
- if self.config.problem_type is None:
|
|
|
|
- if self.num_labels == 1:
|
|
|
|
- self.config.problem_type = "regression"
|
|
|
|
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
|
|
- self.config.problem_type = "single_label_classification"
|
|
|
|
- else:
|
|
|
|
- self.config.problem_type = "multi_label_classification"
|
|
|
|
-
|
|
|
|
- if self.config.problem_type == "regression":
|
|
|
|
- loss_fct = MSELoss()
|
|
|
|
- if self.num_labels == 1:
|
|
|
|
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
|
|
|
- else:
|
|
|
|
- loss = loss_fct(pooled_logits, labels)
|
|
|
|
- elif self.config.problem_type == "single_label_classification":
|
|
|
|
- loss_fct = CrossEntropyLoss()
|
|
|
|
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
- elif self.config.problem_type == "multi_label_classification":
|
|
|
|
- loss_fct = BCEWithLogitsLoss()
|
|
|
|
- loss = loss_fct(pooled_logits, labels)
|
|
|
|
- if not return_dict:
|
|
|
|
- output = (pooled_logits,) + transformer_outputs[1:]
|
|
|
|
- return ((loss,) + output) if loss is not None else output
|
|
|
|
-
|
|
|
|
- return SequenceClassifierOutputWithPast(
|
|
|
|
- loss=loss,
|
|
|
|
- logits=pooled_logits,
|
|
|
|
- past_key_values=transformer_outputs.past_key_values,
|
|
|
|
- hidden_states=transformer_outputs.hidden_states,
|
|
|
|
- attentions=transformer_outputs.attentions,
|
|
|
|
- )
|
|
|